i
liiiiﬁlllli

i Sgg:
L;i l*i

An Introduction to Forces
in Quantum Monte Carlo

Literature Review - Problems and Challenges -
and what we hope to do about them

Alexander Badinski
28th of July 2005

Quantum Monte Carlo in the Apuan Alps Workshop At The Towler Institute




Outline

Motivation

The Hellmann-Feynman Theorem (HFT)

- HFT and QMC (all electrons, pseudopots)
- Some First Benchmark Results for H,
Review of Forces and QMC

- Forces via correlated sampling

- Forces via renormalization

- Forces via ,,smart projections*

Our approach: using Pseudopotentials, and a generalized
version of previous projection technique




Why Forces with QMC ?

this work references
Argp Arpmc raf. Armyp2
0.0004(6) | -0.011/-0.007
-0.0040(8) | -0.016/-0.017
-0.014¢{4) | -0.039/-0.048
0.0040(8) | -0.001/-0.005
0.000{1) -0.010/-0.011

A28gr AdOBpue I HE{ref. A20ccacyT
2.74 0.8(1) 0.99/1.42

Bwe ; Accurate Quantum Chemistry

@ CCsD(T) Methods are computationally

O QCISD(T) .
W BLYP demandlng

B MP2

m HF : DFT 1s often the only option for
larger systems

Making QMC a ,,stand alone*
method

Ref.: Badinski, Dimplomarbeit, Technische Universitéit Berlin (2003)

Different Methods for each Molecule
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Geometries without Forces in QMC
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FIG. 3. Li, molecule. Variational Monte Carlo (VMC) energies (open
squares), fixed-node diffusion Monte Carlo (DMC) energies (closed
squares), and exact nonrelativistic curve (solid line). The dotted line be-
tween VMC results is a simple linear interpolation to guide the eye.

Ref.: R. Assaraf, M. Caffarel, J. Chem. Phys. 119 10536 (2003)

Question: what is meant under equilibrium geometry ? Ambiguous! Why ?

Consider H, : R, = 0.7417 A (Min of Born-Oppenheimer Surface)
R,= 0.7505 A (expectation value of bond length in ground state)
R,-R,=0.01 A
Convention in optical spectroscopy: use R,




Hellmann-Feynman Theorem (HFT)

Total Energy: EVMC=<5UT 1H%:>  Total Force: e 1r= =V v Epyclr

<>
HFT!2: If the wavefunction W is the exact one, i.e. ¥ =¥, the energy
gradient 1s the average of the expectation value of the gradient of H.
<PV H[H >
< [F >
Proof: (using that ¥, is real and H 1s Hermitian)
<5”T|VRH|5VT>+<¥’T’|H|5UT>+<5UT|H|SVT'>
<¥. |¥ > <¥.|¥ > <¥. |¥ >
—<5UT“LI|¥/TZ>(<SUT’|5”T>+<5”T|SUT’>)+28EV(ai
<¥ |¥ > w. Oc, OR
:<SUO|VRH\YJO>+2<‘PT \H|SUT>_2<YJT|H|TT2><TT,|SUT>+28EV8&
<¥|¥, > <V |¥ > <V |¥ > w. Oc, OR
g _ -

[k

_FRHFT = vREO |R =

V. E, =

HFT Pul c
F F, F,

R

In the limit W — ¥, , all terms cancel except for F;"FT.  QED
Hence, using the HFT 1s only an approximation — with a few exceptions...

I'H. Hellmann, Einfiihrung in die Quantenchemie, Franz Deuticke, Leipzig (1937)
2 R. Feynman Phys. Rev. 41 721 (1939)




The HFT 1in Hartree Fock

The HFT forces is the exact force in Hartree Fock in the limit of a complete basis
Note: - the same is true for DFT

- “exact” 1n the sense of Hartree-Fock of course
Proof: Start with the total Hartree Fock Energy

core 1 1
E™ =<¥*®|H|¥*®>=> PH +Ez PWPM(<V,UMO'>—E<VO'M/J>) (1)

177 VUAC

5 core . 1 Z . & S

<vu| Ao >=[drdr (i)4,(i)r;" ¢,( )8, ()
Now, get Force from eq.(1),

VE® =Y P, V.H, “+O(deriatives of ¢, wrt R)

Y%

u=l

with Vo HS =V, <@, | H" | g, >=<, |V H |4, >+ <8,/ | H" | §, >+ < g, | H" | §,'>
Hence, in the limit of a complet basis set (that e.g. does not depend on the
atomic coordinates), the last equation simplifies to

VE¥ =) P <4, |VH""|¢, >

y7%

which is the HFT for Hartree-Fock. QED

This is a quite remarkable result that HFT not only holds for exact ¥
=¥, but also for ¥, = ¥>P in the basis set limit !!!




The HFT 1in Hartree-Fock

Comparison: HFT and Analytic derivatives
with Hartree Fock for H2+ at R = 1.0 Bohr

—&— HFT Force
Analytic Force
—e— Energy

a.u.
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o
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o
L

Total Energy in

1/0/0 3/1/0 5/2/0 10/2/0 12/4/1 exact
Basis Set Quality s/p/d

Data taken from ref.: B. Hammond, et. al., Monte Carlo Methods, World Scientific (1994)

Total Hartree Fock energy (blue) and consequently its analytic derivative
(yellow) converge much faster with the basis set size than the HFT force

(purple). (more to say about that in QMC later !!!)




Exact Forces in VMC

<H|\VH| > <HNH[E > <¥ |H|5”T2> <EE > +26EVMc%
<¥.|¥ > <¥. |¥ > <¥. |¥ > — Oc, OR
c OEyyc Oc _

First, assume: ; dc, oR

Critical assumtion, since we generally use variance minimization, Ref.[1]

From before: ViE,, =

Using identity: <,'|H |, >= [ ¥, H ¥dr =jsvT'ﬁ(HsvT)ﬁdr =< ¥, |5;T E, ¥, >

T
1 P @
we get: VE,o=————<W¥, |VH+2E,~L-2E, ~L|¥ >
g rEvMC <SUT|SUT> | W yMC SUT| (2)
_ R,-R,
with V| ' Z Z “ f”|R -R, |3
/)

|1a

F o F HFT +F Pulay \;: II(IOH)
L

Define local force: =r L

with the local HFT force F""=-VH

Pula
and local ,,Pulay* correction force: F==2(E, — Epye )4 -
Final expression used for MC integration:

r.— R ! .
<F,>|,.=< —Z Z, ﬁ ~2(E,—-E,, )?T >1,,» +1I(ion)

1 o T

T !

T

' M. Lee, M. Mella, A. Rappe, J. Chem. Phys. 122 244103 (2005)




Problem - Infinite Variance in F; B!

Relevance ....
Variance: o(F,,) =<(F,,"" ) >-<F, ™" >’
with F,"™ =(-VH), i=1.3N and VH-= Zz

[llustration of the Problem:
consider F,"FT of H atom in x direction at R = 0 (average must be 0; & =¢ -*")

5= 227

| T = o

2 2\

0 2
X X X : : reo_
o :<—6>—<—3>2:<—4> = J(COS¢ 51n¢)281n¢d¢d¢_[—46 22T dy  — o

r r r 5 7

Possible Solutions:
- Not sample forces with QMC !

- Cut out sampling region around nucleus
- Use pseudopotentials to eliminate 1/r> term close to the nucleus
- Renormalize Variance to finite value

- Projecting out I = 0 component of the charge density at the nucleus




Exact Forces in DMC

For the Mixed Estimator:
<YV |H|¥ >

—<F, >,,=V r|H %,
<>
_<HIVHI% > <WI\HIF> < IHIW> o <> <H|F>
<¥ | ¥ > < ¥>  <EI¥%> O <HI¥> <EI|¥%>
<y | B2y <>

_<HI|VHI%> o <HI%> v ¥ g SEIE> 7
<EI¥> <% > <¥|¥> <> <¥|%>
WOI

)

)

— Useless Expression since ¥,* unknown (4)
01 ¥

:<VH+(EL—EO)

Unpleasant Solution: Use Pure Estimator
In this case however the HFT states that HFT force is the exact force:
_<¥%I|VH|¥ >
L <>
Pure Distributions can be obtained by
- Future Walking (considered unstable)
- Reptation QMC (demanding and not much experience)
- Second-order Approximation <F,"" >, . =2<F" > o —<F" >,

should give exact force in the limit W, =¥, .




HFT and Pseudopotentials in QMC

Let us re-express the HFT force for pseudopotentials
—<F" >=<¥ |V, H, +VJV.  |¥>

loc nloc

with V, H, = ZV Vipey ; + 1 (ion) ViV o = Z \

_j ZVRV,M +1,dr+ll+j P (1,0 rN)Z<r|VRvnzoc|r>¥’(n,

,.Fy )dr

I

—

= - <F

nloc

d R —T
—vlocl +1( za) | R _ |J>
: f IE”\

d

locl +1(za)|R . |

To get non-local Part <F', > we first need to calculate

l
: 5 0(1, — Ty 20 +1
|’/; >:VRZ ( )lnloc( ) P(yl)

1=0 ~ 4z
(See Overhead)

< ’/; | VRvnloc | ’/;’,>: VR < ’/; | anoc




HFT and Pseudopotentials in QMC

Some Technicalities:

In general (in Casino), ¥

d

dl’ VlOC,lmax-i-l (’/;'a )

i

; 1s give on a grid. Therefore,

oc,Imax+

can be obtained by polynomial interpolation: extend Neville‘s Algorithm!

to include derivative (thanks to John)

Questions:
1. Which degree of Interpolation to choose ?

2. How good 1s the numerical interpolation of the derivatives compared
to the analytic once ?

! Numerical Recipes, p. 99-107




Calculated Pseudopotential Forces for H,

Pseudopotential VMCHF Energy and HFT Force Pseudopotential VMC Energy and HFT Force
Convergence for H2 at R=0.7395 Angstrom Convergence for H2 at R = 0.7395 Angstrom

—_—

—e— VMC Energy
—=— VMC HFT Force

HFT Forces in a.u.

o HF Energy
—— VMCHF Energy
VMCHF HFT Force

Total Energy in Hartree

Total Energy in Hartree
HFT Force in a.u.

‘ ‘ 15 2
Basis Set Qulity Basis Set Quality

Pseudopotential DMC Energy and HFT Force _ In VMCHF force OverShOOtS“ as
9 29

Convergence for H2 at R =0.7395 Angstrom
—+—DNC Energy basis set quality increases

-1.17000 + - 0.00500
—=— DMC HFT Force (mixed)

-1.17200 - DMC HFT Force (pure) -+ 0.00300

- in VMC, Jastrow factor corrects
,,overshooting of the force*

-1.17400 - - 0.00100

-1.17600 - - -0.00100
41.17800 | + 000300 - DMC pure estimate seems to
118000 -0.00500 improve results over mixed one

Total Enery in Hartree
HFT Force in a.u.

15 2 . 35
Basis Set Quality

Different HF basis sets used: cc-pCVDZ (4s,1p), cc-pCVTZ (5s,2p,1d), cc-pCV6Z (10s,5p,4d)




Calculated Pseudopotential Forces for H,

Pseudo Force for DZ Basis Pseudo Force for TZ Basis

T
1T

e
T T 'r! T e 1
425 073 0735 9.-‘74/9@5 0.755
- -
i —*—VMCHF
—<—VMC
DMC (mixed) X DMC (mixed)

DMC (pure) DMC (pure)
H-H Distance in Angstrom H-H Distance in Angstrom

0.7 /5% 0.745 _¢_VMCHF

—=—VMC

HFT Force in a.u.
HFT Force in a.u.

Pseudo Force for 6Z Basis - For DZ basis, including Jastorw
factor might worsen force ....

- For TZ VMC and DMC agree with
cach other (same for 6Z basis)

T T d‘-/ T T 1
125 oS 0735 074 074 —e— VMCHF _
| —%—VMC - 67 basis set force seems to have a

DMC (mixed) c
DMC (pure) closer zero to the experimental

H-H Distance in Angstrom Value Of 0741 Angstrom

Different HF basis sets used: cc-pCVDZ (4s,1p), cc-pCVTZ (5s,2p,1d), cc-pCV6Z (10s,5p,4d)




Calculated Pseudopotential Forces for H,

Calculated Equilibrium Geometry from

Pseudo HFT Force Hartree Fock Geometry

—e—VMCHF optained from quadartic fit to

—=—VMC the (pseudo) total Energy:
DMC (Mixed)
DMC (Pure) Basis Set Opt. Geo-

1 metry [A]
X cc-pCVDZ | 0.7332

cc-pCVTZ | 0.7338
cc-pCVo6Z 0.7335

£
e
7]
o
c
b
£
£
[}]
€
o
Q
(O]

expt. geometry

Seems converged !
Basis set Quality

- The VMCHEF equilibrium geometry from HFT reproduces the equilibrium
Geometry from energy minimization ® HFT seems to reproduce exact force for
largest cc-pCVQZ basis set

- For smaller basis set, adding Jastrow may worsens geometry

- For larger basis set, good agreement with experimental geometry




The same for all Electron....

Look at different cutoff radii: :
calculate HFT force in VMC for H, with 1m moves, 1 block, at 0.7395 A

3
«
£
@
o
c
8
S
©
>

Variance for different Cutoff Radii

y = 0.3624x71%%3

0.1 0.15
Cutoff Radii in Bohr

Min and Max local HFT Force over sampling
time

¢ Minimum Value
y = 2.0279x1-6257 m Maximum Value

Cutoff Radius in Bohr




The same for all Electron....

Look at different cutoff radii: :
calculate HFT force in VMC for H, with 1m moves, 1 block, at 0.7395 A

3
«
£
@
o
c
8
S
©
>

Variance for different Cutoff Radii

y = 0.3624x71%%3

0.1 0.15
Cutoff Radii in Bohr

VMC Allelectron Forces for Different cuttofs
for 6Z Basis

¢ Cutoff r = 0.02 Bohr
—m— Cutoff r = 0.01 Bohr
Cutoff r = 0.005 Bohr

0.745 0.75
y = 0.3687x - 0.273

HFT Force in a.u.

VMC HFT Force

t

0.05 CutaffiRadius imBohr 0.2

Diverging variance for r ® 0, hence,
the errorbar of my calculated force
would diverge

But force seems to agree within the
error bar for all cutoff radii

Tradeoff of r = 0.05 Bohr seems ok,
my expectation: similar in DMC




HFT Force in a.u.

HFT Forces in a.u.

The same for all Electron....

All Electron Forces for DZ Basis

—e— VMCHF
—m—VMC
DMC (mixed)
DMC (pure)

0009.725 0.73 0.735 6|_.'74

Quality of Basis

All Electron Forces for 67 Basis

—e— VMCHF
—a—VMC
DMC (mixed)
DMC (pure)

0.74 0.745 0.75

similar error bars
as before

Quality of Basis

0.755

HFT Force in a.u.

All Electron Forces for TZ Basis

—e— VMCHF
—m—VMC
DMC (mixed)
DMC (pure)

0.745 0.75 0.755

similar error bars
as before

Quality of Basis

Again, for DZ basis including
Jastrow seems to worsen force

VMCHEF estimate for geometry
seems to be converged again for
largest basis

For VMC and DMC not clear ...




The same for all Electron....

Equivilibrium Geometry from All electron Force
—&— VMCHF
—m—VMC
0.755 DMC (mixed)

DMC (Pure) (

0.750 1 &
0.745 $\ . +

0.740 expt. geometry
0.735

0.730

0.760

£
o
@
<)
c
<
£
g
(]
E
o
@
(O]

Basis Set Quality

- For VMC and DMC (mixed, pure) equilibrium geometry corresponds with expt.
For largest basis set

- For VMCHEF same results as previously with pseudos
- Again, including Jastrow might worsen force (and hence geometry)
- VMC results seem to be already very good for largest basis set

- DMC (mixed and pure) geometry is less good then VMC (probably due to the still
large error bares)




Summary so far

- Basis set seems to be crucial for HFT estimator in VMC and mixed and
2nd order approx. pure DMC

- Our initial hope to only look at HFT estimator and to neglect the Pulay
terms is difficult to justify

- All equilibrium geometries in agreement with experiment for largest basis
in their error bars (0.01 A for 27 order approx pure DMC).

- Forces with Pseudopotentials in QMC seem promosing: optained
equilibrium geometry for QMC pseudopotential calculations seem to be in
excellent agreement with experiment, and closer to experiment than all
electron calculations. Next step (1) include nonlocal components, (2) try
other systems.

- Already for H,, obtaining forces this way is quite exensive !!! And other
methods will appear to be necessary.




Forces via Correlated Sampling (CS)

Idea of CS: use same configurations to sample different ‘s

In VMC: Start from ¥ [a.] and generate W [[3] by looking at small
differences in the objective function

Variance Minimzation (o represents a set of parameters)

Y. [x *(E e VMC °d & 2
o’[a]= '“ ;l ( 1-Bre) dr ~ 1 Z(EL[aﬂri]_EVMC)

o]l dr M

conf i=l

Use CS to express

_[| VMC)Zdr_
j ¥ |dr

j| JalFE L [B]-EBuye)’ @la, fldr ALZ(EL[ﬁ,ri]-EVMC)%[a,ﬁ]
(1 [a1F ofa, Aldr : > ola.p]

ola, f]= %ﬂ]z using the same set of configurations {r.}.

2 b




Forces via CS in VMC

Geometry Optimization' (o represents set of nuclear coordinates {R })

For the reference geometry {R f} = o

| [r, 2] FE,[r, ]dr ot
EVMC[a]_j J-| ~ 1 ZEL[ri’a]

r, ] dr M

conf 1=l

For the secondary geometry {R ¢} =3
(Notice: {R s} enters &, and H)

1 M
[e,t]PE, [B.1] o, B, r]dr M;(EL[ﬁ,ri]w[a,ﬂ,ri]
|V [a,r]f ola, B r]dr - le wla, B.r]

EVMC[IB]_ j| J‘

with ofa, gr]=2LB5

LP[Ot,ri]2

!'C. Filippi, C, Umrigar, Interatomic Forces and Correlated Samplin in QMC, World Scientific, (6/2001)




Forces via CS in VMC

Further Improvements:
Space-Warp Transformation

Idea: improve the set of reference configs {r*f} via a smart trafo to a
secondary set of configs {r.:sc}

Na[()m
Choose: r*[r]=r+ > (R, -R,) - W,[r,{R,}]

(r-R,)"

> =R,

b) write r[r,] in terms of r, using space warp trafo

with W, [r,{R,}]:=

a) replace r; by r;**¢ and

. J.| a I,sec (rref) ZE [,B rSGC(rref)] [a,ﬂ,rsec (rref)]. ‘ J(rref) ‘ drref
VMC I| a I,seC(rref) [a’ﬂ,rsec (rref)]. ‘ J(rref) ‘ drref

Reoptimize HF Orbitals for W (R3¢°)




Forces via CS in DMC

CS in DMC
1. drift/diffuse/branch primary walker {r}

2. Get secondary walker {rs} via space-warp trafo
Notice: {rs} is effectively proposed by wrong dynamics by using
Gyirvaiee (R,R*,7) and p instead of G® .4 e (R%,R%,7° ) and p?
3. Correct wrong dynamics by multiplying weights of {r®} by
G’aitrvairr (R”,R°,1%) p°
GR',R,1)  p

ST it S(R',R,7) =-12(E, (R)- E, (R')-2E,)r

4. Step 3 introduces large fluctuations
Instead of Step 3: approximate secondary weights by

S(R JR°.T)

w _WH S(RRr)

In theory: Npmject
In practice: N

as large as possible

project = 50 to minimize fluctuations




Some Results and Critique

W DMC
I VMC

[ CCSD(T)
OQCISD(T)
mBLYP

H MP2

W HF

Q@
=}
(o]
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=

e
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©
(0]
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Ke)
[2)

©
o}

<
=]
©
=
=
c
(0]
9
=
[m]

-0.03 -0.01 0.01 0.03
Deviation from Expt. Bond Length in Angstrom

A. Badinski, Dimplomarbeit, TU Berlin (2003)

Pros:

-Agreement with experimant
relatively good

- error bars small

Cons:

- Limited to very small systems




Forces via Renormalization (VMC)

Idea: renormalize HFT force to reduce infinite variance
T !
Recall: F,=-VH-2(H-E,, )?T

T
Redue derivation of last eq. by substituting H — ks’

Similar as before, one gets #

~ H-FE ).’ Y.
FL:_VHT_( L% _2(EL_EVMC)?T

H-E, ), ¢
Hence F,=F, L _TL) r
The last eq. can be interpreted as a trafo of the local force F;.

It can actually be shown that this trafo can be generalized to

ﬁL:FL—(H_EL)a

with o being any (reagonable) fct.
Note:  <F, >,.=<F, >, holds (F, is “renormalized”)

Proof: <F >-<F >=<¥, |£M] |, >= IWTMWT

v 7,
Now, see that proposed trafo F » reduces variance (to zero in the limit
ofa =¥, =¥,)

¥ H
ZI?:(HWT)aHUT—( o=

T

'R. Assaraf, M. Caffarel, Phys. Rev. Lett. 23 4682 (1999)




Forces via Renormalization (VMC)

Recall: Y 1s exact (satisfies the Schrodinger equation) < the local energy has
zero variance (with E; = E,)

Theorem: Y(1) and W’ (L) are exact (the Schrodinger eq. and its first
derivative with respect to a parameter hold) < the local energy and
transformed local force have zero variance and the zero-variance equations

hold
E, = <E > (7)

L 7 pp

F,= <F > (8)

L7 p

Further, ¥, ¥,’, E,,f, are a unique solution if H is non-degenerate.

Eq.(7) 1s ordinary Schrodinger equation.
Eq.(8) 1s obtained by taking the derivative of the Schrodinger eq. wrt A.




Forces via Renormalization (VMC)

Proof: V([H-E,1¥;)=0 & (VH-VE,.)¥ +(H—E;)¥ =0

(2 '
eci:(> }_FL _2(EL _EVMC)YJT

Now, in the limit of ¥ =¥, :
S(-F,+<F,>)¥Y,+(H-E,, . )¥,=0
(H—-Ey )t (9)

+<F, >)¥,+(H-E,, )¥ =0

T

SF, =<F >+
R
from which it follows: £, #<F; >, (evenif W = ¥ !!!)

Now, to see that F, has zero variance, just plug F, from eq.(6) in eq.(9) for o. = ¥

<:>ﬁ 4 (H_EL)&U’T (H_EVMC)EU'T
L

=< F, >+
(EL — EVMC)T,T

T
SF, =<F, >+

T

which means that 7, has zero variance in the limit of Y. =Y. QED

Conclusion: ¥, and ¥, * are exact <> eq.(7) and eq.(8) are satisfied. Hence, the
zero-variance equations determine a unique solution ¥, ¥, E, F; .




Forces via Renormalization (VMC)

Back to VMC, in theory one would then sample

F =T _ (H_EL)&U'T _ (EL_ <E, >)&U'T
L L WT WT

Possible Solutions:

1. Make a good ansatz for a rather than choosing the exact ‘¥’

“ r—R
. 5 =7 1
a.—Q_‘PT with Q A;|ri_R|

Nele

< Problem: Derivative of W

It follows that (L -E)a _ z,y 5 —R3 _Vo-vV¥,
v o |, —R| Y.

Clearly, this would then remove the singular part responsible for the infinite
variance

. Approximating ‘¥’ with a finite-difference form of ¥
g Dr[R+AR {6, [R+AR]} - #7[R, 16, [R]}]
AR
Thereby, {c,} denotes a set of parameters entering V. And AR can be
interpreted as an additional parameter to minimize the fluctuation!
. Derive an analytic expression for ¥’




Forces via Renormalization (VMC)

Solution 1

e e
PO - X

e ~‘\-!._.,._,,.—i!;..‘u”'°' e

Exact —

<F»

< Fymezv [T W¥minl> =~
I <Fymczvzs [ Vr¥minl> ——

3
o
St
@
(2]
kel
@
o
g
|

-
™
Q
=
>

5 5
R (a.u.)

FIG. 4. Various VMC average forces for Li,. Closed squares with large
error bars: (F), Eq. (67). Open squares joined by the dashed line:

(Fyneal ¥ ¥minl), Eq. (72). Circles joined with the dotted line:
(Fymeavesl ¥ Uo]), Eq. (73). Solid line: exact nonrelativistic force
curve.

Solution 2

Exact —

u
o
o
&

< Fymc-zvze [ ¥ Yminl > =
= ~ — J
\ <Fymczvze [ V1 Woeriv V1>

VMC average force (a.u.)

FIG. 6. VMC force for Li,. Lowest irregular curve with closed squares:
(Fymeav[ ¥ Wminl), Eq. (72). Upper curve with open squares:
(Fyymeal ¥r s Paene s01)s Eq. (79). Solid line: exact nonrelativistic force
curve.

Solution 1: o = Q W, 1s still not good enough
Solution 2: the finite difference method seems already better

'R. Assaraf, M. Caffarel, J. Chem. Phys. 119 10536 (2003)




Forces via Renormalization (DMC)

Mixed Estimator in DMC
In a similar derivation as previously in VMC, one gets for the mixed estimator

(H_EL)TT, YJT’ 5Uo'

—(E,-E,)(—+—-) <« Same Problem as before in DMC !

Fy=—VH - 2
T T (0]

Proposed Solution: make the following approximation

LS

whence

ﬁL :_VHT _ (H_EL)TT

Y.’

_Z(EL_EO) w (10)

Note: the only difference with the earlier VMC estimator lies in the value of the
average energy £, =< FE, >.

“Residual systematic error: 1in the limit of exact nodes the mixed estimator is
not exact in eq.(10) - as it 1s in the case of the energy - since H acts on ‘¥;".
Solution: it can be shown that the pure estimator partially reduces that error.
“Error* here means that the reduction of the variance is not optimally!




Forces via Renormalization
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FIG. 5. Li, molecule. Average forces using F v 5(ihr, o), Eqs. (73)-
(75). VMC average: lowest curve with open circles. DMC average: interme-
diate curve with closed squares. Hybrid average: highest curve with open
squares. Solid line: exact nonrelativistic force curve. Dashed lines between
QMC results are a simple linear interpolation to guide the eye.

Ref.: R. Assaraf, M. Caffarel, J. Chem. Phys. 119 10536 (2003)




Forces via Renormalization (DMC)

Using variance minimization Using energy minimization

. By ¥, w0, 80d @ x_for LiH-HF and CO obtained fmom VI and

TABLE [. VMC, DMC, and hybrid estimates of the equilibrium geometry 0
laticos and cupedmentsl data.

R, (a..) and harmonic frequency w, (cm '). The atomic isotopic masses
taken® are 1.007 825 035 amu for 'H and 7.016 003 0 amu for 'Li.

H, LiH Li,

. (VMC) 1.463(12) 3.111(17) 5.346(27)
, (DMC) 1.426(13) 3.056(6) 5.200(16)
. (hybrid) 1.305(15) 3.001(15) 5.068(27)
, (Expt)® 1.401 3.015 5.051

v, (VMC) 4194(130) 1559(40) 366(9)

(
v, (DMC) 4432(165) 1549(22) 373(5)
(
(

. (hybrid) 4662(205) 1519(31) 387(8)
v, (Expt.)” 4395.2 1405.65 351.4

Ref.: Assaraf, M. Caffarel, J. Chem. Phys. 119 10536 (2003)

In both Ref. date, the forces are extracted
by a leased square fit of the Morse
potential (and its derivative)
V(I/') = De[l — e—ﬂ(r—re)]2 -Lo0.407
to binding energy (and its forces) ? o031

Question: How general is this approach if
we are interested in forces in larger Ref:M. Lee et.a., J. Chem. Phys. 122 244103 (2005)
systems ?




Side Note: Density Matrix in QMC

General Definition

p(r,r') = I‘P(rl,..rl.,..rN)P(rl,..rl.,..rN)drl...dr ar.,,..dr,
Expand it

IO(rn’r’n ) = Zpyﬁ(rn)¢ *(r’n )

with p, = Nj¢*(r)¢( ) ((r' '))\S”(...,r ..... )P dr'_dr

or sampled in QMC! using pure distribution

<Z [ 6= pr )”(—r))drn'>
......... »

2
PI'OOfI ZZ :Idrndrn'[p(rn’rn')_Zpij¢i(rn)¢j(rn)]2 ZL:
i yor
Generalization to non-orthogonal basis sets possible and necessary for
Gaussian basis set !!!

P. Kent, R. Hood, M. Towler, R. Needs, G. Rajagopal, Phys. Rev. B, Vol.57, 15293 (1998)




Forces via Projection

Idea: Projecting out the s component of the charge density reduces the s-component of
variance of the HFT estimator Charge density

Motivation: The force from the s component of the charge averages out &
to zero due to its spherlcal symmetry, ¢.g. the previous hydrogen atom |

F'L[FT(R:O):J‘aVr—2 dQ——constxO 0
r
0

|xf
Q0
Derivation: Differentiate between electrons that are closer to the nucleus
than R and those that are further away, R ~ 1 Bohr
FHFT :F>R +F<R
F<Rwill be calculated ordinarily using the HFT estimator.
To rewrite F<%, introduce a force density f
R

f(r)=2[dQp(r.9)VH  with F*=[f(rdr

15t Crucial Step: Require f{7) to be a smooth fct. of r that tends to 0 linearly
as r R 0. Therefore, expand it in the interval (0,R) with a polynomial

fM(r)= Zakrk

'S. Chiesa, S. Zhang Phys. Rev. Lett. 94 36404-1 (2005)




Forces via Projection

Look at the force density for H in the LiH molecule

DMC using antithetic variates
DMC using bare estimator
Hartree Fock

FIG. i. Force density along the z direction tor the H atom in
LiH. The bond is along the z axis, wilh a length of 3.3 16 bohrs.
‘I'he continuous black curve is calculated trom the Hartree-Fock
orbitals. The dashed line is the estimate of f. using the bare
estimator. Circles are obtained in an identical QMC simulation
using the antithetic sampling technique outlined in the text.

Ref.: Chiesa, et. al. (see before)
2nd Crucial Move: determine the coefficients a, by minimizing

R
2 =[drlfi(r)- ()1
in particﬁ)lar after optimization w.r.t. all a,, we get

Rm+j+k+1

M N
a =S4  with S = A =7 ¥ o(r
k ; Y K m k1 / Z‘jl p()

Since A; can be sampled using a pure distribution,

u m+j L
Aj:Z<Zrl. ’W@(R—;;)>

i=1

I'i

|t P

i

7

we get the final expression

F<* :Tf(r)dr ;]‘ifﬁt(r)dr :iakjgrkdr




Forces via Projection

TABLE I. Equilibrium distances in A. Experimental,
CCSD(T), and B3LYP values were taken from Ref. [10]. The
CCSD(T) and the B3LYP results were obtained using the cc-
pVTZ basis set with the exception of LiH where the 6-311G* set
was used. PBE results [11] were all obtained using the aug-cc-

pVTZbaglqget: Difference Of 1St
QMC Exp. CCSD(T) B3LYP PBE and 2" column :

H, 0.7419(4) 0.741  0.743 0.743  0.751 0.001(1)
LiH 1.592(4) 1596  1.618 1.595  1.606 0.004(4)
CH, 1.091(1) 1.094  1.089 1.088  1.096 0.003(1)
NH; (N-H) 1.0092) 1.012 1.014 1.014  1.023 0.003(2)
NH; (H-H) 1.6242) 1624 1.616 1.624  1.634 0.000(2)
H,O (O-H) 0.959(2) 0956  0.959 0961 0.971 0.003(2)
H,O (H-H) 15193) 1517  1.508 1520  1.531 0.002(3)
HF 0.919(1) 0918 0917 0923  0.932 0.001(1)

Ref.: S. Chiesa, S. Zhang Phys. Rev. Lett. 94 36404-1 (2005)

Geometries calculated with QMC agree well with the
experimental bond length !

Note: pure sampling has been used (i.e. future walking)




Our Idea (for all electron)

Similar Motivation: Project out parts of the Density which is not |geg

relevant (disturbing)
Start with All Electron case: (consider nucleus R=(0,0,0))

~FUT —<WV HIY > with Vo H =Y (Vv (x.))+ I (ion—ion)
= [ (Vv 1)+ 1

= %jzp(riﬁ ;) (Vv " ())dr + 11

Now, expand p in Spherical Harmonics:

) l
FHFT _ % J’Z R, ()Y, (2)(V v (r))dr, + 1]
i 1=0 /

m=—

with R, (r)=[p(1r,Q)Y,, *(2)d2,

— 4o v @)+ i

n "

with V() =2, 1

B




Our Idea (for all electrons)

N27/3(-6,0,,+06,0.,,)
. v, .
From the Identlty: melm(gi)d‘gi =|iN27/3(-0,6,,-9,0.,,)
! 2N /3 6,,0,,

Hence, only three R -terms need to be evaluated: R, ., and R,

R, (1) = p(1,Q)Y, (2 )d2,
And since p 1s expanded in Gaussians

Zom(1.0.8) = NY,, (9.9 )"
the spherical Integral in eq.(11) 1s just a product of three Spherical
Harmonics and can be evaluated analytically

Finally, the radial integration over r, needs to be performed to get FHf! in
eq.(12), should analytically be possible




Our Idea (for Pseudopotentials)

Recall from before :
—<F"" >=<¥ |V, H, +VpV

loc nloc

| ¥ >

2
:j ¥, VRZvloc,lnm+l,idr+[I +I S”O(rl,..ri,..rN)Z< t Vv, |5 S (1.,
— ~ i

I, Jdr

I

Y-<F > \2:/-<F

loc nloc

Recall local Part <F, > via direct sampling

loc

i=l a=1 o 1

-<F, >_<Z Z( Vioe, +1( )ia:i}j> + 1l (ion)
i

Now, get local Part <F,, > via Density Matrices
Recall, Vi 1n.x; 18 @ single-electron operator; therefore rewrite

\R — 1|

i

_<E0c >_Z '[p(191 ( locl +1(za) jdr +]I(101’l)

The further steps are in analogy to the previous all electron case: expand p
sin Spherical Harmonics and reduce the infinit expansion to the same three
R,,—terms R, R, ; and R,,.




Our Idea (for Pseudopotentials)

Now, get non-local Part <F

loc

> via Density Matrices

Similar as for the local component
= < o >= [ Fo( 00 )< 1, |V 0, |6/ SF (1,1
i
= Z _[ P(T,L" ) <T [V, | 1'> drdr!
i

Only difference 1s that p 1s now depending on r, and r.*

Now, follow similar procedure as before, 1.e. expand p AND <r,|V, v
Spherical Harmonics.

r.>1n

I’lOC|

For the 1 components in the pseudopotential, we get the following number of
R, - terms when simplifying the integrals over Spherical Harmonic

for 1 = 1: additional 21 terms

for 1 = 2: additional 19 terms

for 1 = 3: additional 19 terms

for 1 = 3: additional 91 terms

See my notes for excessive expressions




Conclusions

- Forces in QMC are very challenging and are by far not a routine tool yet

- Forces is QMC is quite an interdisciplinary field requiring new ways of sampling
(e.g. Reptation MC) and better ways of optimizing trial wavefunctions

- Pseudopotentials seem to be one way of removing the infinit variance, however, it
appears to be computationally still rather demanding. Therefore, there 1s a need for
alternative ways....

Different Approaches exist but it is not clear yet which one is the most promising one;
the projection technique suggested for all electrons seems to produce results closest to the
experiment.

Study questions and next things to do:

- Will our good results for local pseudopotentials (H,) generalize for bigger systems
using non-local pseudopotentials ?

- How good/reliable/expensive will Reptation MC be to sample pure distributions ?

- Is our proposed generalization of removing higher angular momenta via projection
doable and how good will it be ?




