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Why Forces with QMC ?
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Accurate Quantum Chemistry 
Methods  are computationally 
demanding

DFT is often the only option for 
larger systems

Making QMC a „stand alone“ 
method 

Ref.: Badinski, Dimplomarbeit, Technische Universität Berlin (2003)



Geometries without Forces in QMC
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Question: what is meant under equilibrium geometry ? Ambiguous! Why ?

N2

Consider H2 : Re = 0.7417 Ǻ (Min of Born-Oppenheimer Surface)
R0 = 0.7505 Ǻ (expectation value of bond length in ground state)

R0 – Re ≅ 0.01 Ǻ
Convention in optical spectroscopy: use Re

Ref.: R. Assaraf, M. Caffarel, J. Chem. Phys. 119 10536 (2003)



Hellmann-Feynman Theorem (HFT)
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HFT1,2: If the wavefunction ΨT is the exact one, i.e. ΨT = Ψ0, the energy 
gradient is the average of the expectation value of the gradient of H.

1 H. Hellmann, Einführung in die Quantenchemie, Franz Deuticke, Leipzig (1937)

Proof: (using that Ψ0 is real and H is Hermitian)
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In the limit ΨT →Ψ0 , all terms cancel except for FR
HFT.      QED

Hence, using the HFT is only an approximation – with a few exceptions…
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2 R. Feynman Phys. Rev. 41 721 (1939)



The HFT in Hartree Fock
The HFT forces is the exact force in Hartree Fock in the limit of a complete basis 
Note:   - the same is true for DFT

This is a quite remarkable result that HFT not only holds for exact ΨT
= Ψ0 but also for ΨT = ΨSD in the basis set limit !!!

- “exact” in the sense of Hartree-Fock of course
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Hence, in the limit of a complet basis set (that e.g. does not depend on the
atomic coordinates), the last equation simplifies to

Proof:    Start with the total Hartree Fock Energy
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which is the HFT for Hartree-Fock.                                                       QED



The HFT in Hartree-Fock
Comparison: HFT and Analytic derivatives 
with Hartree Fock for H2+ at R = 1.0 Bohr
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Data taken from ref.: B. Hammond, et. al., Monte Carlo Methods, World Scientific (1994)

1/0/0 3/1/0 5/2/0 exact12/4/110/2/0
s/p/d

Total Hartree Fock energy (blue) and consequently its analytic derivative
(yellow) converge much faster with the basis set size than the HFT force 
(purple).  (more to say about that in QMC later !!!)



Exact Forces in VMC
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Final expression used for MC integration:
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Using identity:

we get: (2)
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First, assume:
Critical assumtion, since we generally use variance minimization, Ref.[1] 

1 M. Lee, M. Mella, A. Rappe, J. Chem. Phys. 122 244103 (2005)



Problem - Infinite Variance in FL
HFT
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Illustration of the Problem:
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HFT of H atom in x direction at R = 0 (average must be 0; = e - r )
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Possible Solutions:
- Not sample forces with QMC !

- Use pseudopotentials to eliminate 1/r2 term close to the nucleus
- Renormalize Variance to finite value
- Projecting out l = 0 component of the charge density at the nucleus

- Cut out sampling region around nucleus

( )iHFT
i,L HF ∇−= N...i 31=with

Relevance ….



Exact Forces in DMC
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For the Mixed Estimator:

← Useless Expression since Ψ0‘ unknown

Unpleasant Solution: Use Pure Estimator
In this case however the HFT states that HFT force is the exact force:
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Pure Distributions can be obtained by
- Future Walking (considered unstable)
- Reptation QMC (demanding and not much experience)
- Second-order Approximation VMC
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HFT and Pseudopotentials in QMC 
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HFT and Pseudopotentials in QMC 

1. Which degree of Interpolation to choose ? 
2. How good is the numerical interpolation of the derivatives compared

to the analytic once ?

Some Technicalities:
In general (in Casino), Vloc,lmax+1 is give on a grid. Therefore,  

)r(V
dr
d

il,loc
i

max α
α

1+

can be obtained by polynomial interpolation: extend Neville‘s Algorithm1

to include derivative (thanks to John)

Questions:

1 Numerical Recipes, p. 99-107



Calculated Pseudopotential Forces for H2
Pseudopotential VMCHF Energy and HFT Force 

Convergence for H2 at R = 0.7395 Angstrom
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Convergence for H2 at R = 0.7395 Angstrom  

-1.18000

-1.17800

-1.17600

-1.17400

-1.17200

-1.17000

0 0.5 1 1.5 2 2.5 3 3.5

Basis Set Quality

To
ta

l E
ne

ry
 in

 H
ar

tre
e

-0.00500

-0.00300

-0.00100

0.00100

0.00300

0.00500
HF

T 
Fo

rc
e 

in
 a

.u
.

DMC Energy
DMC HFT Force (mixed)
DMC HFT Force (pure)

Pseudopotential VMC Energy and HFT Force 
Convergence for H2 at R = 0.7395 Angstrom

-1.180

-1.178

-1.176

-1.174

-1.172

-1.170

0 0.5 1 1.5 2 2.5 3 3.5

Basis Set Quality

To
ta

l E
ne

rg
y 

in
 H

ar
tre

e

-0.005

-0.003

-0.001

0.001

0.003

0.005

H
FT

 F
or

ce
s 

in
 a

.u
.

VMC Energy
VMC HFT Force

- In VMCHF, force „overshoots“ as 
basis set quality increases

- in VMC, Jastrow factor corrects
„overshooting of the force“

- DMC pure estimate seems to 
improve results over mixed one

Different HF basis sets used:   cc-pCVDZ (4s,1p),   cc-pCVTZ (5s,2p,1d),   cc-pCV6Z (10s,5p,4d)



Calculated Pseudopotential Forces for H2
Pseudo Force for TZ Basis
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- For DZ basis, including Jastorw
factor might worsen force ....

- For TZ VMC and DMC agree with
each other (same for 6Z basis)

- 6Z basis set force seems to have a 
closer zero to the experimental 
value of 0.741 Angstrom

Different HF basis sets used:   cc-pCVDZ (4s,1p),   cc-pCVTZ (5s,2p,1d),   cc-pCV6Z (10s,5p,4d)



Calculated Equilibrium Geometry from 
Pseudo HFT Force
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Calculated Pseudopotential Forces for H2

- The VMCHF equilibrium geometry from HFT reproduces the equilibrium
Geometry from energy minimization HFT seems to reproduce exact force for
largest cc-pCVQZ basis set

- For smaller basis set, adding Jastrow may worsens geometry

- For larger basis set, good agreement with experimental geometry

0.7335cc-pCV6Z

0.7338cc-pCVTZ

0.7332cc-pCVDZ

Opt. Geo-
metry [A]

Basis Set

Hartree Fock Geometry
optained from quadartic fit to 
the (pseudo) total Energy:

Seems converged !

expt. geometry



The same for all Electron….

Variance for different Cutoff Radii 
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Look at different cutoff radii: 
calculate HFT force in VMC for H2 with 1m moves, 1 block, at 0.7395 Ǻ



The same for all Electron….

Variance for different Cutoff Radii 
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Look at different cutoff radii: 
calculate HFT force in VMC for H2 with 1m moves, 1 block, at 0.7395 Ǻ

VMC HFT Force 
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VMC Allelectron Forces for Different cuttofs 
for 6Z Basis

y = 0.3687x - 0.273
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- Diverging variance for r 0, hence, 
the errorbar of my calculated force 
would diverge

- But force seems to agree within the
error bar for all cutoff radii

- Tradeoff of r = 0.05 Bohr seems ok, 
my expectation: similar in DMC



The same for all Electron….
All Electron Forces for DZ Basis
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All Electron Forces for 67 Basis
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- Again, for DZ basis including
Jastrow seems to worsen force

- VMCHF estimate for geometry
seems to be converged again for
largest basis

- For VMC and DMC not clear …

similar error bars
as before

similar error bars
as before



The same for all Electron….
Equivilibrium Geometry from All electron Force
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- For VMC and DMC (mixed, pure) equilibrium geometry corresponds with expt. 
For largest basis set

- For VMCHF same results as previously with pseudos

- Again, including Jastrow might worsen force (and hence geometry)

- VMC results seem to be already very good for largest basis set

- DMC (mixed and pure) geometry is less good then VMC (probably due to the still 
large error bares)

expt. geometry



Summary so far 
- Basis set seems to be crucial for HFT estimator in VMC and mixed and 
2nd order approx. pure DMC

- Our initial hope to only look at HFT estimator and to neglect the Pulay
terms is difficult to justify

- All equilibrium geometries in agreement with experiment for largest basis
in their error bars (0.01 Ǻ for 2nd order approx pure DMC). 

- Forces with Pseudopotentials in QMC seem promosing: optained
equilibrium geometry for QMC pseudopotential calculations seem to be in 
excellent agreement with experiment, and closer to experiment than all 
electron calculations. Next step (1) include nonlocal components, (2) try
other systems. 

- Already for H2, obtaining forces this way is quite exensive !!! And other
methods will appear to be necessary.  



Forces via Correlated Sampling (CS)
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In VMC: Start from ΨT [α] and generate ΨT[β] by looking at small
differences in the objective function

Idea of CS: use same configurations to sample different ΨT‘s



Geometry Optimization1 (α represents set of nuclear coordinates {Rn})

Forces via CS in VMC
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(Notice: {Rn
sec} enters T and H)

1 C. Filippi, C, Umrigar, Interatomic Forces and Correlated Samplin in QMC, World Scientific, (6/2001)
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a) replace ri by ri
sec and

b) write ri
sec [ri] in terms of ri using space warp trafo

Further Improvements:

Idea: improve the set of reference configs {ri
ref} via a smart trafo to a   

secondary set of configs {ri
sec}
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Forces via CS in VMC

Space-Warp Transformation

Reoptimize HF Orbitals for ΨT(Rsec)



Forces via CS in DMC
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1. drift/diffuse/branch primary walker {r}
2. Get secondary walker {rs} via space-warp trafo

Notice: {rs} is effectively proposed by wrong dynamics by using
Gdrift/diff (R,R‘,τ) and p instead of Gs

drift/diff (Rs,R‘s,τs ) and ps

3. Correct wrong dynamics by multiplying weights of {rs} by

CS in DMC 

4.  Step 3 introduces large fluctuations
Instead of Step 3: approximate secondary weights by

∏=
project
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N
τ)R,S(R',
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In theory: Nproject as large as possible
In practice: Nproject ~ 50 to minimize fluctuations



Some Results and Critique
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Pros: 
-Agreement with experimant
relatively good 

- error bars small 
Cons:
- Limited to very small systems 

A. Badinski, Dimplomarbeit, TU Berlin (2003)



Forces via Renormalization (VMC)
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Idea: renormalize HFT force to reduce infinite variance

Hence

1 R. Assaraf, M. Caffarel, Phys. Rev. Lett. 23 4682 (1999)
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The last eq. can be interpreted as a trafo of the local force FL. 

Now, see that proposed trafo reduces variance (to zero in the limit 
of α = ΨT‘ = Ψ0‘)   . . . . . . 

Redue derivation of last eq. by substituting 
Similar as before, one gets
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It can actually be shown that this trafo can be generalized to

with α being any (reasonable) fct. 

LF~

Assaraf eq.(19) with LF~O~ −=
HFT

LFHO −=∇=

(6)



Theorem: Ψ(λ) and Ψ’(λ) are exact (the Schrödinger eq. and its first 
derivative with respect to a parameter hold) ⇔ the local energy and 
transformed local force have zero variance and the zero-variance equations
hold

Forces via Renormalization (VMC)

2||LL EE
Ψ
><=

2||LL F~F~
Ψ
><=

Further, Ψ0, Ψ0’, E0,       are a unique solution if H is non-degenerate.

(7)
(8)

Eq.(7) is ordinary Schrödinger equation.
Eq.(8) is obtained by taking the derivative of the Schrödinger eq. wrt λ.

Recall:  Ψ is exact (satisfies the Schrödinger equation) ⇔ the local energy has 
zero variance (with EL = E0)

LF~
Assaraf eq.(33)
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from which it follows: 2||LL FF
Ψ
>≠< ( even if  ΨT = Ψ0 !!!)

Now, to see that       has zero variance, just plug       from eq.(6) in eq.(9) for α = Ψ’

(9)

which means that       has zero variance in the limit of ΨT = Ψ0 .
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Conclusion: Ψ0 and Ψ0 ‘ are exact ⇔ eq.(7) and eq.(8) are satisfied. Hence, the 
zero-variance equations determine a unique solution Ψ0, Ψ0’, E0,     .  

Forces via Renormalization (VMC)

LF~ LF~

LF~

eq.(2)

Now, in the limit of ΨT = Ψ0 :
0=−+><+−⇔ TVMCTLL ')EH()FF( ΨΨ

QED

Assaraf eq.(34)

LF~



Back to VMC, in theory one would then sample
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Forces via Renormalization (VMC)
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Possible Solutions:
1. Make a good ansatz for α rather than choosing the exact ΨT’

It follows that
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Clearly, this would then remove the singular part responsible for the infinite 
variance

2. Approximating ΨL’ with a finite-difference form of ΨL

R
[R]}]{c[R,∆R]}][R{c∆R,[R: kk

∆
ΨΨα TT −++

=

Thereby, {ck} denotes a set of parameters entering ΨT. And ∆R can be 
interpreted as an additional parameter to minimize the fluctuation! 

3. Derive an analytic expression for ΨL’



Forces via Renormalization (VMC)

Solution 1: α = Q ΨT is still not good enough
Solution 2: the finite difference method seems already better

Solution 1 Solution 2

1 R. Assaraf, M. Caffarel, J. Chem. Phys. 119 10536 (2003)



Forces via Renormalization (DMC)
In a similar derivation as previously in VMC, one gets for the mixed estimator

Solution:   it can be shown that the pure estimator partially reduces that error.
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Proposed Solution:   make the following approximation
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Note:   the only difference with the earlier VMC estimator lies in the value of the
average energy E0 = < EL >.

Mixed Estimator in DMC

“Residual systematic error“:   in the limit of exact nodes the mixed estimator is
not exact in eq.(10)  - as it is in the case of the energy - since H acts on ΨT‘.

(10)

“Error“ here means that the reduction of the variance is not optimally!

Assaraf eq.(52)



Forces via Renormalization (DMC)

Li2

Ref.: R. Assaraf, M. Caffarel, J. Chem. Phys. 119 10536 (2003)



Forces via Renormalization (DMC)
Using variance minimization Using energy minimization

In both Ref. date, the forces are extracted
by a leased square fit of the Morse 
potential (and its derivative)

2]1[ )rr(
e

eeD)r(V −−−= β

Ref.:M. Lee et.a., J. Chem. Phys. 122 244103 (2005)

to binding energy (and its forces) ?

Question: How general is this approach if
we are interested in forces in larger 
systems ?

Ref.: Assaraf, M. Caffarel, J. Chem. Phys. 119 10536 (2003)



Side Note: Density Matrix in QMC  
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General Definition

P. Kent, R. Hood, M. Towler, R. Needs, G. Rajagopal, Phys. Rev. B, Vol.57, 15293 (1998)

Expand it

Generalization to non-orthogonal basis sets possible and necessary for 
Gaussian basis set !!!
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or sampled in QMC1 using pure distribution



Forces via Projection
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Idea:    Projecting out the s component of the charge density reduces the 
variance of the HFT estimator

1 S. Chiesa, S. Zhang Phys. Rev. Lett. 94 36404-1 (2005)

To rewrite F<R , introduce a force density f 

Derivation:   Differentiate between electrons that are closer to the nucleus 
than R and those that are further away, R ~ 1 Bohr 

H),,r(dZ)r(f ∇= ∫ ϕφρΩ ∫=<
R

R dr)r(fF
0

with

1st Crucial Step:    Require f(r) to be a smooth fct. of r that tends to 0 linearly 
as r 0. Therefore, expand it in the interval (0,R) with a polynomial

Motivation:    The force from the s component of the charge averages out 
to zero due to its spherical symmetry, e.g. the previous hydrogen atom
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F<R will be calculated ordinarily using the HFT estimator.



Forces via Projection
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2nd Crucial Move:   determine the coefficients ak by minimizing

Look at the force density for H in the LiH molecule

Ref.: Chiesa, et. al. (see before)

DMC using antithetic variates
DMC using bare estimator
Hartree Fock
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Forces via Projection

Ref.: S. Chiesa, S. Zhang Phys. Rev. Lett. 94 36404-1 (2005)

0.001(1)

Difference of 1st

and 2nd column :

0.004(4)
0.003(1)
0.003(2)
0.000(2)
0.003(2)
0.002(3)
0.001(1)

Geometries calculated with QMC agree well with the
experimental bond length !
Note: pure sampling has been used (i.e. future walking)



Our Idea (for all electron)
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Similar Motivation: Project out parts of the Density which is not 
relevant (disturbing)
Start with All Electron case: (consider nucleus R=(0,0,0))
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From the Identity:

Our Idea (for all electrons)
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Hence, only three Rlm-terms need to be evaluated: R1 1 and R10 

And since ρ is expanded in Gaussians

Finally, the radial integration over ri needs to be performed to get FHFT in 
eq.(12), should analytically be possible

the spherical Integral in eq.(11) is just a product of three Spherical 
Harmonics and can be evaluated analytically
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Our Idea (for Pseudopotentials)
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Recall local Part <Floc> via direct sampling

Now, get local Part <Floc> via Density Matrices
Recall, vloc,lmax,i is a single-electron operator; therefore rewrite

The further steps are in analogy to the previous all electron case: expand ρ
sin Spherical Harmonics and reduce the infinit expansion to the same three
Rlm – terms R11, R1-1 and R10. 
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Our Idea (for Pseudopotentials)
Now, get non-local Part <Floc> via Density Matrices
Similar as for the local component

Only difference is that ρ is now depending on ri and ri‘
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nlocRinloc ΨΨ ∑∫ >∇<>=<−

'dd|v|)( nlocR
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For the l components in the pseudopotential, we get the following number of 
Rlml‘m‘ terms when simplifying the integrals over Spherical Harmonic

Now, follow similar procedure as before, i.e. expand ρ AND <ri|∇R vnoc|ri‘> in 
Spherical Harmonics.

for l = 1: additional 21 terms
for l = 2: additional 19 terms
for l = 3: additional 19 terms
for l = 3: additional 91 terms

See my notes for excessive expressions



Conclusions
- Forces in QMC are very challenging and are by far not a routine tool yet

- Forces is QMC is quite an interdisciplinary field requiring new ways of sampling
(e.g. Reptation MC) and better ways of optimizing trial wavefunctions

- Pseudopotentials seem to be one way of removing the infinit variance, however, it
appears to be computationally still rather demanding. Therefore, there is a need for
alternative ways….

- Different Approaches exist but it is not clear yet which one is the most promising one; 
the projection technique suggested for all electrons seems to produce results closest to the
experiment.

- Study questions and next things to do:

- Will our good results for local pseudopotentials (H2) generalize for bigger systems
using non-local pseudopotentials ?

- How good/reliable/expensive will Reptation MC be to sample pure distributions ?

- Is our proposed generalization of removing higher angular momenta via  projection
doable and how good will it be ?


