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Slater—Jastrow Wave Functions

e Slater—Jastrow wave functions are used in
QMC:

W(R) = exp[J(R)] Y en D) (R) D} (R).

e Free parameters in the Jastrow factor are:
1. polynomial expansion coefficients,
2. plane-wave expansion coefficients, and
3. cutoff lengths for isotropic terms.

e [ he plane-wave and polynomial expansion
coefficients occur linearly in the Jastrow
exponent.



Why Optimise the Jastrow Factor?

The DMC energy is independent of the
Jastrow factor (in the limit of zero time step

and infinite population).

Optimising the Jastrow factor reduces
time-step and population-control biases.

Better wave functions give smaller statisti-
cal error bars on estimated quantities.

Extrapolated estimation (e.g. of charge
density) requires a good wave function.



Reweighted Variance Minimisation

Generate a set of configurations distributed
according to W2 using VMC.

Associate a weight of W2/WZ with each
config. (Jastrow factor doesn’'t affect
nodal surface, so weights don’'t diverge.)

Reweighted mean local energy W~ 1AW es-
timates (H)y, and reweighted variance o2
of W~1HW estimates 02 = (H?)y — (H)%,.

Can therefore estimate the energy variance
for any given parameter set using a fixed
sampling of configuration space.

Variance is positive, but is zero if W is an
eigenstate of H. So, minimise the variance
to optimise the wave function.



Unreweighted Variance Minimisation

If W is an eigenstate of H, then W—1HAWV is
constant in configuration space.

Can therefore optimise W by minimising
the unreweighted variance o2 of the local
energies of any fixed set of configurations.

In limit of perfect sampling, o2 is indepen-

dent of Wy. This is not true of o2.

Can iterate unreweighted varmin to self-
consistency, however.



Example: 1D Quartic Potential

Suppose a particle of unit mass moves in a
1D quartic potential. The Hamiltonian is
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Let the trial wave function be

W(x) = exp (—oza:Q) :

The energy expectation value is

8a3 + 3
1602
Minimum is £ = 0.6814, when a = 0.9086.

The variance of the energy is
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The minimum of ¢2 is at o = 0.9676, for
which F = 0.6841.

Suppose configurations are distributed ac-
cording to W2 = exp(—23z2). Then

5 4B%a* + 3 —66a?

u — 834 :

The minimum of ¢2 for a given 3 is at

o)
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Repeated unreweighted varmins generate
a sequence of values of «, starting with

ag = B, and satisfying ay, = (1/2)\/3/an_1.

The stationary point of this process, irre-
spective of the initial 8, iIs asxx = 0.9086.
This is equal to the result of energy min-
imisation, not variance minimisation!



Studies of Model Systems

e Model systems exist for which energy min-
imisation, reweighted varmin and SC un-
reweighted varmin give different results.

e In all cases studied, SC unreweighted
varmin leads to a Ilower energy than
reweighted varmin.

e Results of SC unreweighted varmin are of-
ten exactly the same as the results of en-
ergy minimisation.



Linear Jastrow Parameters

Suppose the Jastrow exponent is linear in
P parameters {a}:

P
JR) = > fi(R)a; + Jo(R).
i=1

Then the local energy W lAW is a
quadratic function of the parameters.

Suppose N configurations are distributed
according to W3,

The unreweighted average local energy is
also quadratic in {a}. It has a global max-
imum at {a} corresponding to Wg.

The unreweighted variance is a quartic
function of the parameters.



Sum over configs not required, so 05 can

be evaluated extremely rapidly.

The coefficients of the quartic variance can
be accumulated in VMC.

Along any line in parameter space, o7 is a
quartic polynomial of a single parameter.

The global minimum of a quartic polyno-
mial can be determined analytically.

Hence 05 can be minimised rapidly, exactly

and globally along lines in parameter space.

After using BFGS to find a (local) min-
imum of 05, one can perform billions of
analytic line minimisations along random
directions to look for lower minima.



Scaling

Standard varmin scales as

O (N?P?Ng) .

The new varmin method scales as

O (P*).

Evaluating the “basis functions” f;(R) in
VMC scales as

O (PN?N¢) .

Evaluating the quartic coefficients in VMC
scales as

O (P*Nc) .



Nature of the Variance in the Space of
Linear Jastrow Parameters

e Nonglobal minima of 05 are only found for
a very poor sampling of config space.

e 02 is more likely to contain nonglobal min-

ima than o2.

e For good samplings of config space, un-
reweighted and reweighted varmin give
very similar results; for poor samplings, un-
reweighted varmin is more stable.

e For poor Jastrow factors and large sam-
plings of config space, the minima of the

energy, o2 and o2 clearly differ.

e For high-quality Jastrow factors and good
samplings of config space, the minima of
the energy, o2 and o2 are very close.
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Sampling of Configuration Space

Wave-function quality increases rapidly
with no. of configs used in optimisation.

For small molecules, 10,000 configurations
are usually sufficient to optimise linear Jas-
trow parameters.

Variance is a smooth function of linear pa-
rameters; it is not a smooth function of
the cutoff lengths, however.

Improving the sampling of config space
makes the variance a smoother function of
the cutoff lengths.

Can try to improve the quality of the sam-
pling of config space by removing configs
whose local energies are far from the mean.
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Wave-Function Flexibility

e \Wave-function quality generally increases
rapidly as the number of free parameters is
increased, before saturating.

e [ heresults obtained with a very large num-
ber of parameters are often poorer than
those obtained with smaller numbers.
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Timing Results

The optimisation phase in the new method
IS almost instantaneous, irrespective of the
system size.

The time taken to evaluate the basis func-
tions is generally negligible.

The time taken to compute the quartic co-
efficients is significant for small systems,
but not for large systems (it is independent
of system size).

Overall, new method is 3—10 times faster
than old method for a range of systems.
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Conclusions

Self-consistent unreweighted variance minimi-
sation is better than reweighted variance min-
imisation because:

1. In the limit of infinite sampling, the result-
iNng energy is generally lower,

2. For small samplings of configuration space,
it is more stable;

3. The unreweighted variance is a quartic
function of linear Jastrow parameters, en-
abling rapid evaluation;

4. For any reasonable sampling of configura-
tion space, the unreweighted variance does
not have nonglobal minima in the space of
linear Jastrow parameters.
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