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Who Cares?

• The surface of a semi-infinite electron gas is the simplest
real test of most electronic structure methods.

• Exchange and correlation at surfaces is interesting.
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The Controversy
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• Surface energies extrapolated from DMC simulations of
jellium spheres,

E = Nǫbulk + 4πr2σ + 2πrγ ,

agree with DFT.

• RPA- and GW -based calculations agree with DFT.
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For the surface energy of jellium at alkali-metal
densities, the local-density approximation (LDA) and
more advanced density-functional methods disagree
strongly with the wave-function-based Fermi
hypernetted-chain and diffusion Monte Carlo methods.

Z. Yan, J.P. Perdew, S. Kurth, C. Fiolhais and L. Almeida
Phys. Rev. B 61, 2595 (2000)

Are the slab DMC results wrong?
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Surface Energies at (in erg cm−2) when rs = 2.07

Illinois (Li): σDMC = −465 ± 50
Illinois (Acioli): σDMC = −420 ± 80

Perdew et al.: σLDA = −610
σGGA = −690
σMGGA = −567
σLDA/RPA = −553
σGGA/RPA = −587

1 erg cm−2 = 6.25 × 10−5 eV Å
−2

= 6.42 × 10−4 mHa Bohr−2
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Accuracy
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Nǫslab = Nǫbulk + 2L2σ

σ =
N

2L2 (ǫslab − ǫbulk) =
N

2L2 ∆ǫslab

Assuming rs = 2.07 and s = 20, require

∆ǫslab ≈ 0.1 mHa (3 meV)

for resolution ∆σ ≈ 50 erg cm−2.
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Another problem:

σ ≈ −600 erg cm−2

σs ≈ −4600 erg cm−2

σes ≈ 1000 erg cm−2

σxc ≈ 3000 erg cm−2

Because σ passes through zero near rs = 2.07, σ is much
smaller than its components.
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Variational Quantum Monte Carlo

• Guess ΨT (R) = ΨT (r1, r2, . . . , rN).

• Evaluate

E [ΨT ] =

∫

Ψ∗
T (R)ĤΨT (R)dR =

∫

ĤΨT (R)

ΨT (R)
|ΨT (R)|2dR

using Monte Carlo integration.

• Adjust ΨT (R) to minimise E [ΨT ].
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ΨT (R) = eJ(R)
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where

J(R) = −
1
2

∑

i

∑

j 6=i

uσi ,σj (ri , rj) +
∑

i

χ(ri) .



Introduction QMC Possible Explanations Our Work Results and Summary

Diffusion Quantum Monte Carlo

∂Ψ

∂τ
= −ĤΨ ⇒

Ψ −→ ce−E0τΨ0 as τ → ∞

Defining f = ΨT Ψ, the equation of motion becomes a
drift/diffusion/branching equation:

∂f
∂τ

=
1
2
∇2

Rf −∇R · (vf ) − ELf ,

where

v =
1
2
∇ ln(|ΨT |

2) and EL =
ĤΨT

ΨT
.
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Possible Explanations

• DMC is right and other methods fail.

• Fixed-node errors.

• Finite-size errors.

• Comparing apples and oranges (decreases likelihood of
cancellation of errors).
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Comparing Apples and Oranges
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Acioli’s DMC result was

σDMC = −420 ± 80 erg cm−2 .

Pitarke noticed that Acioli had compared fixed-node slab results
with release-node bulk results. By comparing Acioli’s fixed-node
slab results with fixed-node bulk results, Pitarke obtained:

σDMC = −554 ± 80 erg cm−2 .

(LDA result is −600 erg cm−2.)
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Li avoided this mistake, but did not account for Coulomb
finite-size errors.

Here are surface energies calculated from our (uncorrected)
fixed-node slab simulations and Ceperley and Alder’s
fixed-node bulk simulations.

Number of electrons ǫslab (mHa) σ (erg cm−2)
332 −9.18 ± 0.13 −440 ± 30
466 −8.901 ± 0.097 −370 ± 20
588 −8.818 ± 0.088 −350 ± 20

If Li had included Coulomb corrections, his surface energy
would have been even worse! Looks as if the fixed-node error
is larger in the slab than the bulk.
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Trial Wave Functions

• Real-space grid in z direction.

• Plane waves in xy plane.
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Variance Optimisation Problems
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• Variance and mean of initial configs reduced as expected,
but variance and mean of new configs increased.

• New configs are more spread out: electron density outside
slab increases. This decreases the KE, but increases the
PE by a larger amount.
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Speculative Explanation

Since the initial configs do not venture outside the slab, the
optimiser cannot “know” that going there is unfavourable.

But . . .

• Reweighting does not help.

• Changing the initial sampling to include more configs with
electrons outside the slab does not help.
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Another Speculative Explanation

Long length scales cause optimisation problems.
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Compromise Solution:

• LDA orbitals (with image-tail correction).

• Short-range u:

u(riσi , rjσj) =
α

2(1 + δσiσj )
e−rij/α−r2

ij /L2
c .

• χ calculated analytically from u using Fahy prescription,

χ(r) =
1
2

∫

[

u(r ↑, r′ ↑) + u(r ↑, r′ ↓)
]

n(z ′)d3r ′ ,

and a model n(z).

• Single parameter α optimised by hand.
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Comparing Apples and Apples

Since

N =
Volume

Volume per electron
=

L2s
4
3πr3

s
,

the definition of σ,

Nǫslab = Nǫbulk + 2σL2 ,

may be rewritten as

ǫslab = ǫbulk +
8πr3

s σ

3s
.

Can obtain σ from dependence of ǫslab on thickness s.
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Ideally,

ǫslab = ǫbulk +
8πr3

s σ

3s
,

would be a function of s only. In practice, it also depends on L
and w .

For accurate results, the L- and w-dependent contributions
must be weak functions of s.
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Finite-Size Errors
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Ideally, ǫslab should depend on s only.
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• VMC energy decreases as L2 increases.

• Probable cause is the Lc cut-off in the Jastrow factor.

• Are we going to be able to reach 0.1 mHa accuracy?
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In-Plane Finite-Size Errors
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Slab-Width Oscillations
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Results
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Linear Fit
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From

ǫslab = ǫbulk +
8πr3

s σ

3s

and slope of straight line, find . . .
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From

ǫslab = ǫbulk +
8πr3

s σ

3s

and slope of straight line, find . . .

σ = −600 ± 50 erg cm−1 .

(Disappointingly?) consistent with other methods.
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Summary

• Previous QMC calculations were inaccurate:
• comparing apples with oranges.
• poor treatment of finite-size errors.

• The surface energy is roughly as expected.

• More DMC results on the way.
(I hope . . .)
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