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We report a first-principles theoretical study of hyperfine interactions, zero-point effects, and defect ener-
getics of muonium and hydrogen impurities in silicon and germanium. The spin-polarized density-functional
method is used, with the crystalline orbitals expanded in all-electron Gaussian basis sets. The behavior of
hydrogen and muonium impurities at both the tetrahedral and bond-centered sites is investigated within a
supercell approximation. To describe the zero-point motion of the impurities, a double adiabatic approximation
is employed in which the electron, muon/proton, and host lattice degrees of freedom are decoupled. Within this
approximation the relaxation of the atoms of the host lattice may differ for the muon and proton, although in
practice the difference is found to be slight. With the inclusion of zero-point motion the tetrahedral site is
energetically preferred over the bond-centered site in both silicon and germanium. The hyperfine and super-
hyperfine parameters, calculated as averages over the motion of the muon, agree reasonably well with the
available data from muon spin resonance experimé¢s&163-18209)01643-4

[. INTRODUCTION duced by the decay of the muons one can obtain information
about the defect.

Hydrogen has a wide range of physical effects in semi- When SR experiments are performed on silicon or ger-
conductors, including the passivation of states associate@anium, two different hyperfine signals are observed. One
with deep-level impurities, enhancement of the diffusivity of Of these is entirely isotropic while the other has an aniso-
oxygen, and the formation of large, planar structures knowrropic (dipolan component with uniaxial symmetry along the
as plateletd. It is present in large quantities during the pro- [1 1 1] axis! The impurity responsible for the former signal
cessing stages of device manufacture and is one of the cortf: usually referred to as normal muoniuiu) and that for
monest impurities in technologically important materials the latter, anomalous muoniuiiu™). Normal muonium has

such as silicon and germanium. Since hydrogen impuritie?een. identifi.e(.j as muonium in the int.erstitigll reg.ion, prob-
can have significant effects on semiconductor electrical prop"flny in the V'C'r!'ty of the tetrahedrdll) interstitial S'te.' Sy-
ons and Cokfirst suggested that anomolous muonium cor-

rti mor mpl nderstanding of their behavior .
€ tes,' a more co pgte u .de standing of their behavio aresponds to a neutral muonium at the bond-centéBc)
the microscopic level is desirable.

Paramaanetic hvdroaen center nin orinciole be studi sjte and this has been borne out by a number of theoretical
aramagnetic hydrogen centers ca principie be SWAIEG, yias The various experimental data for muonium in sili-

using the electron paramagnetic resonance technique. Info&bn have been interpreted in terms of a configuration-

mation on their local environment is obtained by following ., dinate diagrari®

the time evolution of the signal corresponding to the cou-  The majority of recent theoretical work in this area has
pling of the impurity spin with an external electromagnetic heen at the first-principles level within an adiabatic approxi-
field. However, few studies have been reported for hydrogemation, using the local spin densitgSDA) or generalized

in semiconductors because the hydrogen atoms are mobilgadient(GGA) approximations to density-functional theory
and diffuse to defects where they form passivated com¢DFT).® Calculations using pseudopotentials and plane-wave
plexes. The transient centers of isolated hydrogen impuritiesasis sefs® have been reasonably successful in reproducing
are nevertheless of significant interest because of their inthe hyperfine and superhyperfine parameters observed in ex-
volvement in diffusion processes. These centers may be stugieriments. These studies have shown that hydrogen impuri-
ied using muon spin resonance techniques in which muonsies at the T and BC sites have similar enerdi@s.

having the same charge as a proton but only about one ninth The Feynman path-integf8imethod allows the quantum

of the mass, are used as proton analogues. A muon can capature of the muon to be included within finite temperature
ture an electron to form a hydrogenlike bound state known astudies. However, the large computational demands of such
muonium, which is given the symbol Mu. Transient centersan approach have limited its use to date. Ramiand

of implanted positive muons in semiconductors may be studHerrerd! used the path integral molecular-dynamics method
ied as the muon has a lifetime of just 2.2 and diffuses to  to study hydrogen and muonium in silicon with the H/Mu-Si
locally stable sites within a few nanoseconds. The short lifeinteraction described by an empirical three-body potential.
time also means that there is almost never more than ondowever, the results appear to be in conflict with experi-
muon in the sample at any one time, and that the distributioment. Recently, Miyakeet al'? applied the path-integral

of muons does not reach true thermal equilibrium. In a muorMonte Carlo technique to the study of hydrogen and muo-
spin resonance experiment fully polarized positive muons ar@ium at the T site in silicon, with the electron-electron inter-
injected into the sample, and by observing the positrons proactions described within the LDA. Despite finding the T site
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in this study were set to 10, 10 ¢, 10/, 10/, and
10~ .13 This is normally sufficient to give a numerical error
of less than 0.001 eV/atom in the relative energies of differ-
ent structures. The reciprocal space integrations necessary to
reconstruct the density matrix in real space at each self-
consistent cycle were approximated by summing over a set
of k points belonging to a mesh of Monkhorst-PHckype
centered on the origin in reciprocal space. The convergence
of both the total energy and the isotropic hyperfine parameter
(a) (b) of the muon with respect to the reciprocal space sampling
density was investigated. A X44X4 k-point mesh was
FIG. 1. The muon/proton at the bond-centefedand tetrahe-  found to be sufficient for the 16-atom supercell. With this
dral (b) sites in silicon. The dashed circles(® show the unrelaxed mesh, the total energy and isotropic hyperfine parameter are
positions of the silicon atoms. These are not showtbjrbecause  within 0.0025 eV/atom and 3 MHz of their fully converged
the relaxations around the T site are negligible. values, respectively. A 83x 3 k-point mesh was used for
the 54-atom supercell, which also gives excellent conver-
to be a local maximum of the potential energy surface, theyjence. The convergence of various quantities with respect to
found the muon distribution to be peaked at that site becausge supercell size and basis set is discussed in Sec. Ill.
of the quantum motion. A hydrogen impurity introduces a defect state into the
In this paper we employ all-electron DFT calculations band gap of the host crystal. Finite supercell sizes give rise
within a double adiabatic approximation to study muoniumto interactions between the defects in different cells and thus
and hydrogen at the BC and T sites in silicon and germato a small but potentially significant dispersion in the defect
nium. The use of all-electron calculations allows an assessand. This dispersion could lead, for example, to overlap of
ment of the accuracy of the correction procedures which arehe majority spin defect band with the minority spin defect
used to obtain the hyperfine and superhyperfine parametegand and/or the silicon valence/conduction bands. In either
in pseudopotential calculatioisThe use of a double adia- case an unphysical conducting state is formed. This problem
batic approximation allows us to obtain both the zero-pointis not entirely eliminated even with the use of the larger
energy and wave function of the impurity. Our inclusion of 54-atom supercell. However, judicious use of the level-
the zero-point motion is at a level beyond previous first-shifting convergence technigti€® allows a small decou-
principles calculations since the positions of the host silicorpling of unoccupied and occupied states which prevents the
or germanium atoms are allowed to relax in the presence afystem entering a conducting state. Population analysis of
the zero-point motion of the impurity. At this level of ap- the final self-consistent wave function revealed that each su-
proximation the relaxations of the host lattice are differentpercell contained a single extra majority spin electron as ex-
for a muon and a proton. Our calculations thus allow ampected on physical grounds. The calculations thus correctly
assessment of the differences in the potentials felt by the twmodel this aspect of the behavior of a single impurity in a
impurities, thereby testing one of the assumptions underlyingarge crystal, which is necessary in order to obtain physical
the configuration-coordinate diagrafrused to interpret ex- hyperfine and superhyperfine parameters.
perimental data.

Il. METHOD B. Gaussian basis sets

The Bloch functions required to expand the Kohn-Sham
orbitals in the solid-state band-structure problem are built

The calculations reported here were performed with thédrom periodic arrays of atom-centered Gaussian functions.
CRYSTAL95 software packadé using the spin-polarized One motivation for the use of such a basis set is that all
density-functional methotf:*®together with both local den- electrons in the system may be treated explicitly, allowing
sity and gradient corrected approximations to the exchangehe spin density at and around the nucléasd hence the
correlation functiona[the Perdew-Zunger LSDAREef. 16 hyperfine parameterd¢o be calculated directly without re-
and the PW91 form of the GGARef. 17]. The calculations sorting to correction procedures of the sort required in
were performed within a periodic supercell approach with gpseudopotential calculations.
single hydrogen impurity in face-centered cubic supercells The basis set used for the majority of the silicon calcula-
containing either 16 or 54 silicon or germanium atoms. Fig-tions was of the typa(8)sp(8)sp(3)sp(1) where the numbers
ure 1 shows the relaxed atomic environments of a singlén brackets refer to the number of contracted primitive Gaus-
muon at both bond-centered and tetrahedral sites in silicorsians making up each shell. For convergence checking we
The measured lattice constants.429 A for silicon and also used a higher quality silicon set with an additiodal
5.6579 A for germaniumwere used in all calculations. polarization function of the typs(8)sp(8)sp(1)sp(1)sp(1)sp

The use of local basis functions requires the real spacél)d(1). The basis set used for the germanium calculations
Coulomb and exchange series to be limited and approxiwas s(9)sp(7)sp(6)sp(3)sp(1)d(6)d(1).
mated as described in Refs. 13 and 18; the accuracy with An uncontracted basis of eleverfiunctions and a singlp
which the various Gaussian integrals are computed is corfunction was used for the hydrogen atom. Such a large set
trolled by classifying basis function pairs according to over-(mainly consisting of functions with relatively high expo-
lap or penetration criteria defined by five parameters, whiclments was found to be necessary to compute accurate hyper-

A. All-electron spin-polarized LSDA-DFT calculations
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fine parameters. A spin-unrestricted Hartree-Fock calculation C. Calculation of zero-point motion

of the total energy of the free atom with this basis gave 1 calculate the zero-point motion of the muon/proton we

—0.49988 Ha, which is close to the exact resultdd.5 Ha.  sed a double adiabatic approximation in which the motions

The isotropic hyperfine parameter was 1421.9 MHz comyf the electrons and of the muon are decoupled from the

pared with the exact value of 1422.8 MHz. The correspondmotion of the atomic nuclei, and the electronic motion is

ing values obtained from an LSDA-DFT calculation with decoupled from that of the muon. The approximation is jus-

this basis set were-0.47833 Hawhich is very close to the tified because a muon is 207 times heavier than an electron

value of —0.47885 Ha obtained from an atomic code usingand 243 times lighter than a silicon nucleus. For a proton the

integration on a very fine grjdand 1356.6 MHz. equivalent factors are respectively 1836 and 28; the decou-
Optimal Gaussian basis sets for close packed solids angling of the proton and silicon motion is thus somewhat less

significantly different from those appropriate to the atomicjustified. The mass differences are more favorable for the

and molecular cases. In particular, careful optimization isheéavier germanium nucleus.

required to avoid the problems of linear dependence and ba- The positions of the silicon/germanium nuclei are denoted

sis set superposition error due to the overlap of diffuse funcbY n, the muon or proton positions by, , and the electron

tions. In this paper we used the following procedure. Al| POsitions byre._Wlt_hln t_he double adiabatic approximation

basis-set parameters were first optimized in the free atoni® wave function is written as a product of nuclear, muon/

The exponents and contraction coefficients of the valenc8/0ton and electronic parts,

functions in silicon and germanium were then reoptimized in _ N ulr - ey -

the pure bulk material. Finally, a hydrogen atom WFE);'(S inserted WTe T =210 XE( ) $Feily o), (2.1

at a bond-centered site, the positions of the nearest-neighb@ere the variables to the right of the semicolons appear as

silicon/germanium atoms relaxed, and the parameters of thearameters and those to the left are dynamical variables.

valence functions of each atom again reoptimized. To tesyVithin the double adiabatic approximation the three wave

the transferability of the optimized basis sets the hydrogeAunctions each satisfy separate Sainger equations

was displaced from the BC site along the bond by 0.27 A, . o . .

and the basis function parameters were reoptimized for the Me(leilu:Tn) @™ (Feil . Tn) =EX(r . Tn) @5(Feil,.Tn),

new geometry. The energy as a function of displacement (2.2

along the bond was calculated for each of these two basis - ) . )

sets. The variation in energy was essentially the same. (i) X (i) = Ba(r) XV irn), 23
The final exponents and contraction coefficients of all the ~ N 0o

basis sets employed in this study are available elsevfere. Hntha(rn) =Eadalrn)- (2.4

It is important to investigate the possibility of basis-setThe subscriptr labels the different eigenstates of the muon.
superposition erro(BSSB in defect energetics calculations Although only the ground state of the nuclear wave function
using localized basis sets. The basis sets for the host lattige considered here, it is also labeled dysince it depends on
atoms are necessarily incomplete. Inserting an impurity atorthe chosen muon eigenstate. The different electronic eigen-
allows additional variational freedom in the description of states are not labeled, since it is only the ground state of the
the atoms adjacent to the defect site, particularly when thelectronic wave function as a function of the muon and
impurity is described by a relatively diffuse basis set. Thisnuclear positions that is of interest in the current work. The
can distort the relative stabilities of defects at impurity sitesthree Hamiltonians are
of differing local geometry. In the present case, the hydrogen_ .
impurity is considerably closer to its neighbors at the BC siteHe(Te;f 4 ,1n) = Te(re) * Vedle) + Ven(re,rn) +Veu(re,r ),
than at the T site, and thus one may expect the BC site to be (2.5
artificially stabilized with respect to the T. . -

This expectation is confirmed by an estimate of the BSSEH u(7 i) = Tu(F ) +V () +Vun(r, Fo) + ES(r ., ),

using a counterpoise correctiéhFor the 16-atom supercell, (2.6)
addition of “ghost” hydrogen basis functions into the re- . B u
laxed silicon lattice lowered the energy per cell by 0.199 eV Hn(rn) =Vin(ra) + Eq(rn), 2.7

(BC sitg) and 0.068 e\(T site) with the smaller silicon basis, | hereT is the kinetic operator anWl,, is the Ewald inter-
and by 0.0533 eVBC sitg) and 0.0243 e\T site) with the  5¢tion petween particles of typasandb. The termV,,, is a
larger silicon basis. In germanium, the energy is lowered by:onstant describing the interactions between the impurity at-
0.251 eV(BC sitg) and 0.0534 e\T site) by the same pro-  oms in different supercells. The electronic energ§, ap-
cedure. Inclusion of a lattice of “ghost” silicon/germanium pears as an effective potential in the muonic Hamiltonian,
functions around a hydrogen atom lowered the energy b¥q. (2.6). Hence, when Eq(2.3) is solved, the resulting en-
less than 0.0005 eV. These numbers may be taken to giveegy includes the electronic contribution. This energy then
rough indication of basis set incompleteness in each case. #fppears in the nuclear Hamiltonian as an effective potential.
can thus be concluded that in silicon the BSSE lowers th@hus the total energy of the system is given by the eigen-
energy of the BC site over that of the T site by around 0.13value in Eq.(2.4).

eV with the smaller basis, but by only 0.03 eV with the In order to find a good starting point for the BC calcula-
larger set. The corresponding correction for the germaniuntions we performed LSDA calculations with the muon/proton
case is 0.20 eV. fixed at the bond center. The positions of the nearest and
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next-nearest neighb@dNN and NNN silicon/germanium at- TABLE I. The values of the parameters in Eg.8) defining the
oms were then relaxed. For the T site the muon/proton wagotential well at the BC site of silicon and germanium. The fit is
held fixed at the T site while the four NN silicon/germanium applicaple within a cylinder Ct_entered on the BC site of radius 1.0 A
atoms were relaxed in the radial direction. (1.1 A in the plane perpendicular to the bond and up+0.5 A
The next step is to calculate the potential experienced b)%o'37 A along the direction of the bond in silicofgermanium.
. . ._The units are such that if the lengths in EQ.8) are expressed in
the muon/proton in the crystal by solving the electronic

- L . Bohr radii then the potential energy is in Ha. N.B. The values
Schralinger Eq.(2.2) within the LSDA, as a function of the quoted are those used in the zero-point calculation and the number

parameters, andr,. For the BC site calculations, the pa- o significant figures should not be taken as an indication of the
rametersr,, were varied by considering four different addi- accuracy of the fit.
tional relaxations of the NN silicon atoms along fHel 1]

direction. For each of the positions of the NN silicon atoms, Silicon Germanium
the NNN atoms were relaxed. We t_hen performe_q a further 0.005 887 53 0.006 107 11
twelve LSDA calculations as a function of the position of the

. . . y 0.0807689 0.0548517
muon/proton for each of these nuclear configurations in or- 0.0 0.0
der to map out the required potential energy surfaces. A ' )
similar progedure was uged forzjermanium. Fg?lthe T site the 0.000 337036 0.000224 779

0.065464 3 0.050623 8

static relaxation of the NN atoms is very small and we as- "
sumed that the zero-point motion of the muon/proton would
not give any additional relaxation.

In order to solve Eq(2.3) for the muon/proton wave func-
tion, we used a fitted polynomial for the energ§(r,, ,ry).
For the BC site we use a cylindrical coordinate system with
the origin at the BC site and tteandp coordinates directed
along the bond and in the plane perpendicular to the bond,
respectively. We have neglected tidedependence of the
potential. This assumption was checked by displacing the

muon by 0.53 A frpm _the BC site along .tlﬁel 10 d_|rec- The fitted values of the parameters in this equation are given
tion and then rotating it about thé 1 1] axis. The maximum in Table Il

variation seen in the energy of the 16-atom supercell during 1o sojution of the muon/proton Séliager Eq.(2.3)

the rotation was just 0.002 eV. The Taylor expansion of the, 55 ghtained by diagonalizing within a basis of harmonic

cylindrically symmetric potential, neglecting sixth-order yggijjator eigenfunctions centered on either the BC or T site.

terms and higher, is We constructed muon and proton basis sets consisting of the
solutions of the harmonic part of the calculated potentials

V+1(X,y,2)=V1(0,0,0) + a,(x*+ y?+z%) + agxyz
+a,(x*+y*+ 2% + by (xPy%+ X222+ y2Z?)
+agxyzx%+y2+7%) +ag(x8+y®+ 25
+be(X2y*+ X224+ x4y 2+ X422+ y2 24+ y*2?)

+ Ccex?y?Z2. (2.9

Vgc(p,2)=Vpc(0,0)+ Bp?+ yz2+ 6p2Z%+ {p*+ nZ*.

28 Vog.=Vec(0,0,0 + B(x*+y?) + y2%,

Vo, =V1(0,0,0 +ax(x*+y*+2°),

As a further simplification in order to avoid costly, low—
symmetry calculations, thép?z? term was neglected. The

resulting Schrdlnger equation is separable. In ord_er to check TABLE II. The parameters defining the expansiges. (2.9]

the assumptlpn 0p-z separablllt_y, a few calculations were of the potential energy surface around the T site in silicon and
performed with the muon at points where both th@ndz  germanium. The fit is applicable over the region bounded by a
coordinates were nonzero. These energies were then cOrgphere of radius 1.0 A centered on the T site. The units are such that
pared with those predicted by the fitted potential neglectingf the lengths in Eq.(2.9) are expressed in Bohr radii then the
the term inpzzz. The errors due to neglecting tl;c»éz2 term potential energy is in Ha. N.B. The values quoted are those used in
increased only slowly away from the BC site, and the correthe zero-point calculation and the number of significant figures
Sponding error in the ground_state energy is small becaus%"lOU'd not be taken as an indication of the accuracy of the fit.

the wave function of the muon/proton is localized around the

using the appropriate particle masses.

BC site. The values of the parameters in E2}8) were ob- Silicon Germanium
tained by a least-squares fit using twelve energies for differ- 5, 0.004 404 92 0.001512 69
ent values of , (for fixed r,). The resulting parameter val- as 0.005 898 98 0.005 424 89
ues are given in Table I. a, —0.00197527 0.000 339 949
The polynomial expansion for the energy surface around p, 0.000 930 883 —0.000 160 207
the T site is the Taylor expansion which is invariant under all 5, —0.00456177 —0.003111 44
of the 24 rotations forming the group,. Cartesian coordi- ag 0.001 557 53 0.000 775975
nates centered at the T site were used, and in order to obtainp, —0.000556 122 —0.000277 064
a good fit to the energy surface it was found necessary to ¢, 0.006 965 01 0.003 47002

include terms up to sixth order
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Having constructed our basis functions we consider thend the origin of coordinates is gt. For a particle located
full potentials, which are written as the sum of harmonic andprecisely at the BC site the hyperfine tensor has axial sym-

anharmonic terms metry about th¢1 1 1] axis and thusA, has the form
VBC: VOBC+ AVBC (21@ 0 1 1
A=A, 1 0 1f, (2.17
VT:V0T+ AVT . (21]) 1 1 0

The Hamiltonian matrix elements were calculated in the bawith A, being the anisotropic hyperfine parameter at this
sis of the harmonic solutions and the resulting matrix equasite. For a particle located precisely at the T site, all elements
tions were diagonalized. A basis set constructed from albf A, are zero and hence the hyperfine tensor is purely iso-
Hermite polynomials up to and including eighth order andtropic.
containing a total of 729 basis functions was found to be In reality the muon/proton will explore the environment
sufficient to obtain converged values for at least the lowesaround these sites by virtue of its zero-point motion and
six eigenvaluest4(ry,), of the system with the muon/proton thermal effects. In order to account for the zero-point motion
at the BC site. At the T site it was necessary to include althe hyperfine interaction tensor must be averaged over the
Hermite polynomials up to twelfth order, which gave 2197 squared modulus of the muon/proton wave function
functions.

The solution of Eq(2.7) is trivial as the operator is mul- _ Y
tiplicative and the gigenfunctions are deltg functions. The <A>”_f IX(rusr) FACr,)dr 218
total energy,E, is therefore the sum oE%(r,) and the

a?

To evaluate the integral for each component/ofwe fit

Ewald energy of the lattice of host atomé,n(ry). A«(X,.Y,.z,) and each of the six distinct elements of the
symmetric tensoA (X, .Y, ,Z,) to polynomial expressions

D. Hyperfine and superhyperfine parameters of the correct symmetry. Since the muon/proton wave func-

and motion averaging tion is expanded in terms of Hermite polynomials, analytic

The components of the hyperfine tensér, define the €Xpressions for the elements @), may be obtained.
spin Hamiltonian for the hyperfine interaction between the ~FOr the isotropic hyperfine parameters the polynomial ex-

spins of an electron and a nucleus pression forAg(x,,y,,z,) has the same symmetry as the
relevant potential energy surface. These parameters were ex-
o =S,-A-S, (2.12 panded in sixth-order polynomials. The polynomial describ-
S : .

ing the isotropic superhyperfine parameter at the BC site
The hyperfine tensor is normally split into isotropic and an-contains terms that are odd ), . (Superhyperfine param-
isotropic parts, eters were not calculated for the T sjtEach of the elements
of A; andA,E,’C were fitted to second-order polynomials of the
A=A +A,, (2.13  correct symmetry.

We now consider the symmetry of the hyperfine tensor
including the effects of zero-point motion. Within the double
adiabatic approximation the muon motion is described by the
wave function X(r,;r,). The motion-average of the
aB-component &,B8=X,y,z) of the anisotropic hyperfine

wherel is the (3x3) unit matrix. The isotropic hyperfine
parametefor superhyperfingarameter when it is calculated
at a nearest neighbor of the impujitig given by

2 S
Ac="50ai1Gois"p, (1) = 104.987p, (1) [MHz].  tensor is given by
(2.19
(AaB)M=Cf f IX(r 5t ) [P (r 41 )T op(r)drdr
where uq is the permeability of free spacgF is the Bohr 21
magnetonu" is the nuclear magneton agd andg,, are the (2.19

electron and nucleay factors?® The position of the nucleus whereC is a constantp, is the electron spin density, and
is denoted by, andp,=p;—p, [bohr %].24 T, denotes the components of the tenSodefined in Eq.
The anisotropic part of the hyperfine tensor is given by (2.16).
The muon/proton may be said to be trapped in a potential
Mo e well if its wave function is negligibly small outside of an
Ap= 27 9et Inkt f T(r)p,(r+ry)dr equipotential-energy surface enclosing the region. The muon
wave function,X, is the nondegenerate ground state of the
potential well and therefore has the full point-group symme-

— n
=12.53Yy f T(r)py,(r+ry)dr[MHz] (2.1 try of the well, i.e.,

whereT(r) is a traceless tensor, P(Qi)X(rM;rn):X(Ri’lr”;rn)=X(rM;rn), (2.20
3x2—r2  3xy 3x7 whereP is a scalar transformation operat@; is an opera-
1 2 .2 tion of the point group of the well, ang; is the correspond-
T(n=—=| 3xy 3y"—r 3Yz |, (216 ing transformation matrix. The electron spin density,

-

3xz 3yz  3z2%-r? po(r+r,), satisfies
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&
=}
g
o

P(Q)po(r+1,)=po (R (1 +1,))=py(r+1,).
(2.21
(A,p) . is unchanged by a scalar transformation of the inte-
grand, i.e.,

[-110]

g
o

® 16-atom
< b4-atom

Auu=c| [ P@)

X[|X(r/,l,;rn)|2p0'(r+r/,L)TaB(r)]drdrM' 0.0 z
(2.22 18 1o 08 Displa?:gment ) 05

(A.p), is again unaltered if we sum over theoperations
and divide by their numbel,

—_
o

Squared normalized wave function
n
[=]
Energy relative to BC site (eV)

o
o

FIG. 2. The square of the protafthin solid line and muon
(dashed linpwave functions at the BC site in silicon. The symbols
C denote the potential well for the 16- and 54-atom supercells, and the
<Aa6>#zﬁ 2 J J P(Q)) thick solid line is the fit of the 16-atom data to E®.8) with the

i parameters of Table I.

X r)? :
[|X(rM,rn)| PoTH1,) Tap(r) Jdrdr, muon/proton relax outwards from the muon/proton by 0.40
(223 A along the[1 1 1] axis with the NNN's relaxing by 0.01 A
Using Egs.(2.20 and(2.21) we have in the same direction. The corresponding relaxations for the
54-atom supercell were 0.39 and 0.02 A. These values are
C 5 close to the plane-wave pseudopotential results of
<Aaﬁ>nzﬁf f X iro)[*polr +1,) Luchsingeret al.” who obtained relaxations of 0.45 A for the
NN silicon atoms and 0.07 A for the NNN's. For the 16-
atom germanium cell the corresponding relaxations were
drdr,. (224 .44 & for the NN's and 0.02 A for the NNN's. Our NN
relaxation is in good agreement with the value of 0.42 A

The symmetry properties dfA,z), are easily obtained calculated by Vogeet al®® . _
from Eq. (2.24. For example, (Ay),=(Ay), if At the T site, the NN atoms in the host lattice were al-
3,P(Q,)xy=3,P(Q;)yz Taking the specific case of the T lowed to relax in the radial direction. The relaxations in sili-
site, it is easily shown thal;P(Q;)xy=3;P(Q;)yz=0, con and germanium were approximately equal and very
where the sum is over the 24 operations of the tetrahedr@mall; just 0.02 Atowardsthe muon/proton in the 16-atom
point group. Similar arguments show that all the elements ofupercell and 0.03 Ain the same directionin the 54-atom
(Ap), are zero for the T site. Similarly, for the BC site we Supercell. Again, this is in agreement with the “negligible”
find that all off-diagonal elements @A, z), are equal, and relaxation for the T site in silicon found by Luchsingstral.
the diagonal elements are zero.

If the zero-point motion of the muon is neglected then
IX(r,;ra)|?=8(r,—r0), wherer, is the position of the
muon. It follows that if the muon is placed at an invariant  The influence of the zero-point motion of the muon/
point of the symmetry group of the well, then including the proton on the relaxation of the silicon/germanium host lattice
zero-point motion does not change the symmetry of the anwas studied by calculating the total energ,, of Eq.(2.4),
isotropic hyperfine tensor. This explains why the zero-poinor different relaxations of the NN host atoms, as described
motion does not affect the symmetry of the anisotropic hy4n sec. |1 C.
perfine tensor for either the T or BC sites. For the BC site four different relaxations of the NN's

The presence of the muon could lead to a symmetry lowwere considered, and for each of these the six NNN’s were
ering distortion of the host lattice, in which case the appro-|so relaxed. The NN relaxations are in addition to the static
priate point group is the lower symmetry one. We have notelaxations given in Sec. IllA. The inclusion of the zero-
considered the possibility of symmetry lowering distortionspoint energy of the muon was found to give only a small
in our calculations because of the computational cost ogorrection to the static relaxations; the NN silicon atoms re-
evaluating the energi®(r ,,r) of Eq.(2.2) for the required  |axed outwards by just an additional 0.01 A in te1 1]
atomic Configurations. However, we believe such distortion%irection, so that the final Separa‘[ion of the muon from a NN

X

Zi P(Q)Tap(r)

B. Relaxations including zero-point motion

to be unlikely for the cases considered here. silicon atom is 1.58 A in the 16-atom supercell. The much
smaller zero-point energy of the heavier hydrogen impurity
ll. RESULTS is small compared with the increase in energy of the crystal

as the separation of the NN atoms is increased and thus there
is no additional relaxation. As a check on the finite-size er-
The static relaxationéneglecting zero-point motiorare,  rors, the energies of five geometries were recalculated using
of course, identical for the muon and proton. Calculationshe 54-atom supercell. These energies and the corresponding
with the muon/proton fixed at the BC site of the 16-atompotential energy curves calculated within the 16-atom super-
silicon cell showed that the two nearest neighbors of thecell are shown in Fig. 2. The very small differences between

A. Static relaxations
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FIG. 3. The square of the protofthin-solid line and muon Displacement from T site in [1 1 1] direction (A)

(dashed ling wave functions at the BC site in germanium. The
symbols denote the potential well for the 16-atom supercell, and th
thick solid line is the fit to Eq(2.8) with the parameters of Table I.

FIG. 5. The square of the protofthin-solid line and muon
?dashed lingwave functions at the T site in silicon. The symbols
denote the potential well for the 54-atom supercell, and the thick

S solid line is the fit to Eq(2.9) with the parameters of Table II. The
the 16-atom and 54-atom results justify the use of the 165 ol has 2 maximum at the hexagonal site situated at 1.18 A

atom supercell n calculations of the shape of the pOt(':‘m'a;)rom the T site, but the fit has been constrained so that it forms a
well at the B(,: site. L L . simple potential well.

The story is very similar for the BC site in germanium.

When the zero-point energy of the muon is included, the ) . ]
relaxation of the NN atoms again increases by just 0.01 A, s@ssume the harmonic approximatiofihe corresponding en-
that the final separation of the muon from a NN germaniun€rgies for germanium are 0.37 eV and 0.22 eV in the direc-
atom is 1.69 A in the 16-atom supercell. Once more, thdions along and perpendicular to the bond, respectively. If we
smaller zero-point energy of the proton means there is n@/ere to consider only the zero-point energy in the direction
additional relaxation due to quantum effects. Figure 3 showglong the bond then the outwards relaxation of the silicon/
the potential energy well and calculated wave functions folgermanium atoms would be larger; approximately 0.03 A in
the muon and proton at the BC site in germanium_ silicon and more than 0.025 A in germanium. Although the
component of the zero-point energy along the bond is sig-
nificantly reduced by further outward relaxation of the
silicon/germanium atoms, the potential well also gets nar-

The zero-point energy of the muon at the BC site wasower in the plane perpendicular to the bond, which tends to
calculated to be 0.63 eV in silicon and 0.56 eV in germa-increase the zero-point energy. The narrowing of the poten-
nium. It is perhaps surprising that such large zero-point ential well in the plane perpendicular to the bond correlates
ergies have so little effect on the relaxations. As shown inwith the narrowing of the bonding charge cloud as the bond
Fig. 4, the potential well is narrow in the direction along the lengthens.
bond and wider perpendicular to the bond. Within the har- Our result of 0.63 eV for the zero-point energy of the
monic approximation one can decompose the zero-point emtmuon at the BC site in silicon is close to the value of 0.54 eV
ergy into contributions from the well along and perpendicu-obtained by Claxtoret al?® from Hartree-Fock calculations
lar to the bond. For a muon at the BC site in silicon this giveson Si,¢Hs, clusters. In that calculation the potential well at
0.47 eV in the direction along the bond and 0.22 eV perpenthe BC site was assumed to be cylindrically symmetric about
dicular to the bond(The sum of these differs from the full the bond(as it is in this papgrand the resulting Schdinger
zero-point energy of 0.63 eV because the latter does naiquation was solved within the harmonic approximation.

The larger mass of the proton significantly reduces the
quantum effects. We calculated the zero-point energy of a
proton at the BC site to be 0.20 eV in silicon and 0.18 eV in
germanium. Our value for silicon is close to that of 0.18 eV
obtained by Luchsingegt al.” within the harmonic approxi-
mation.

In contrast to the results of plane-wave pseudopotential
calculation$?® we find the T site corresponds to a local
minimum in the potential energy surface. This is, however,
in agreement with a more recent plane-wave pseudopotential
study® The calculated energy surface along fhel 1] di-
rection is shown in Fig. 5. It turns out that the muon/proton
is not strongly bound in our potential well, which turns over

FIG. 4. The calculated potential experienced by the muon@t the hexagonal site situated at a distance of 1.18 A from the
proton in the{110} planes for the BC site in silicon. The figure T Site along the[1 1 1] direction. To confine the muon/
shows both of the NN and two of the NNN silicon atoms of the proton in the well we therefore constrained the fit to prevent
muon/proton with the bond lengths drawn to scale. The contour¢he potential turning over, as shown in Fig. 5. The zero-point
range from 0.1 to 0.7 eV in increments of 0.1 eV. energy of the muon/proton calculated in such a well is then

C. Zero-point energies
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the ground state. It is also possible that some of the higher

0.9 ' 0.20 muon may be bound within the well. Numerical calculations
5 o8 N < show a twofold degenerate first excited state at an energy of
g 07 | 1 o15e 0.84 eV. The wave functions of these states are similar to
2 06 - E those obtained from a harmonic approximation, i.e., they
E 0.5 - L consist essentially of an excitation within the plane perpen-
2 sl jo108 dicular to the bond. The energy of the first excited state is
£ 0.3 ] o also reasonably well described within the harmonic approxi-
§ 02 F 10053 mation, which predicts the excited state to be 0.22 eV above
- ]
5 &
3

g'; _ . . 0.00 energy states are bound within the well. In germanium, the
1.0 0.0 1.0 . potential well at the BC site is 1.51 eV deep. The first ex-
Displacement from T site in [1 1 1] direction (A) cited state is twofold degenerate with an energy of 0.78 eV
. o and is of the same character as in silicon.
FIG. 6. The square of the protofthin-solid ling and muon For the more massive proton the excited states are lower

(dashed lingwave functions at the T site in germanium. The sym- in energy. At the BC site in silicon, the twofold degenerate
bols denote the potential well for the 16-atom supercell, and the; .« oycited state of the proton has an energy of 0.27 eV,
thick solid line is the fit to Eq(2.9) with the parameters of Table II. hich is 0.07 eV higher than the ground state, while in ger-
The potential has a maximum at the hexagonal site situated at 1. anium the excited state has an energy of 0 2’5 eV which is
A from the T site, but the fit has been constrained so that it forms a ' '
simple potential well. also 0.07 e\( above the ground state. . .

Each excited state of the muon/proton defines a different

adiabatic potential for the nucléi.e., a differentE%(r,) in

an upper bound on the true value, but as the wave functio . X . .
decays quite rapidly away from the T site this bound is ac-Eq' (2.7)]. It is therefore possible for the lattice relaxations

curate that occur when the muon/proton is in its first excited state
’ L N ... (say to be different from those for the ground state. For

In contrast to the BC site, investigation of the finite-size. . : .

. . , instance, the fact that the wave function of the first excited

effects present in the calculation of this energy surface

showed that while the results in the 16- and 54-atom Supers_tate of the muon/proton is essentially an excitation in the

cells were qualitatively similar, they differed significantly in plane perpendicular to the bond, combined with the fact that

. the potential well in this plane becomes narrower as the sepa-
the openness and depth of the potential well. As a result, the .. : .

; ; ration of the NN atoms increases, results in the NN atoms
calculation of the zero-point energy, etc. of the muon/proton

at this site was carried out using the potential well obtained® ctually relaxing towards the impurity. This relaxation is

from the 54-atom supercell. The expense of the LSDA Cal_small for the muon, but effectively zero for the proton due to

culations with this supercell made the generation of datetltgg mec?t"eedr ;far tcejz-sp?smr:eegr:izri%{e. The effect on the energies of
points off the[1 1 1] axis too costly. Therefqre, th.e thre_e At the T site in silicon the pbtential well is only 0.20 eV
parameters left undetermined after the one-dimensional fit tgeep For the muon this means that even the gro.und—state
the data on thgl 1 1] axis were assigned the values Obtainedeneréy(o 28 eV} of our constrained potential wewhich is

in the fit to the 16-atom supercell data. This is not a critical y er. bound on the true ground state energygreater
choice since the one-dimensional fit has already constrainet bp 9 94

S o an the well depth. The proton, however, haérgply de-
the energy surfa(_:e in eight directiofdue to the symmetry é;eneratbafirst excited state with an energy of 0.14 eV, which
of the T sitg. This procedure was also used to generate

three-dimensional potential-energy function from the fit to &y therefore be bound at the T site. In germanium the po-

gt song 1 1 1 s (ke usg the 1gstom 712 U1 810 T e ot 010 e deep i our -
supercell at the T site in germanium. The parameters ob- o?n from the 16-at6m to the 54-atom supercell in silicon
tained from these fits are given in Table II. going . . sup
; . that the true well depth in germanium will probably be less
For a muon at the T site the zero-point energy was calcu;;, ; . - ) )
oo . . than this. It is therefore unlikely that excited states of either
lated to be 0.28 eV in silicon and 0.22 eV in germanium. For, . g
: the muon or the proton will be bound at the T site in germa-
a proton the corresponding values are 0.09 and 0.06 eV. Thr%um
ground-state wave functions of the muon/proton along the '
[1 1 1] axis in silicon are shown in Fig. 5 and those in
germanium in Fig. 6. The results for germanium must be
considered approximate since we have not calculated any _ _ o
data points off thd1 1 1] axis in this case. In addition, the ~ The heights of the energy barriers confining the_ muon and
16-atom supercell was used for all of the germanium calcuproton at the BC and T sites are clearly of great importance
lations and therefore it follows from the behavior found in in determining the dynamics of the impurities within the lat-
silicon that the true potential energy surface will be moretice and hence are a significant part of the configuration-

open than the one we have obtained. coordinate diagram. _ .
The static barriergi.e., excluding zero-point effegtex-

perienced by the muon and proton are identical. For the BC

site in silicon we calculate the static barrier to motion to-
For a muon at the BC site in silicon our zero-point energywards the hexagonal sitgn the[—1 1 0] direction to be

of 0.63 eV is considerably smaller than the well depth of1.37 eV while in germanium it is 1.51 eV. The effective

1.37 eV, indicating the possibility that excited states of thebarrier height is reduced by the zero-point energy and there-

E. Energy barriers at the T and BC sites

D. Excited states of the muon and proton
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fore depends on the nature of the impurity. Including this

effect, the effective barrier experienced by a muon at the BC X
site in silicon is 0.74 eV while in germanium it is 0.95 eV.

For the proton, the effective barrief$.17 eV in silicon and

1.33 eV in germaniumare higher. The effective barrier

height for the muon at the BC site may be considered a o

measure of the barrier to the BET site transition. In reality 4

this transition is believed to involve charged states: muonium

at the BC site is first ionizeflvith activation energy 0.22 eV .
(Ref. 30] and then moves to the T site while simultaneously

recapturing an electron to regain its neutral charge state. The %’)

sum of the activation and barrier energies for these two pro-
cesses as measured experimentally in silicon is 0.66 eV. FIG. 7. Spin density contour map in the neighborhoodabthe
At the T site the energy barriers are very much lower. INBC site and(b) the T site in silicon. In(a) the muon position is
silicon the static barrier to motion of the muon towards thelocated dead center, with the two nearest-neighbor silicon atoms
hexagonal sitdin the [1 1 1] direction) is calculated to be above and below. Ifb) the large concentration of positive spin
0.20 eV while in germanium it is 0.18 eV. When zero-point density is located on the muon position, the positions of nearby
effects are taken into account, the effective barriers for theilicon atoms in this plane are indicated with crosses. Continuous,
muon at the T site in silicon and germanium are zero indi-dashed and dot-dashed lines correspond to positive, negative, and
cating that, even alT=0 K, the muon is free to diffuse zero values respectively. The separation between adjacent isoden-
through the interstitial region. However, this barrier is notSity contours is 0.001 e/bchr
appropriate for the 7 BC transition because in our calcula-
tions for the muon in the interstitial region, the host atomsthe fact that they depend upon the value of the spin density at
around the BC site are unrelaxed. The nature of the relaxa single point in spacgEq. (2.14)] whereas the anisotropic
ation of these atoms that allows the muon to move to the Brarameters are given by integrals over the spin defBity
site is unclear. Experimentally, the barrier for thesBC site  (2.15]. Although the percentage errors in the isotropic pa-
transition in silicon is 0.39 eV. rameters at the BC site are large, the absolute errors are not
Since the zero-point energy of the proton is around a thirdarge. Table IV gives the hyperfine and superhyperfine pa-
of that of the muon, these calculations indicate that it will berameters calculated at the BC site in both silicon and germa-
bound at the T site in both silicon and germanium with annium together with the results of other calculations for com-
effective barrier of around 0.12 eV in each case. As previparison. Without motion averaging, the values obtained for
ously discussed, the true effective barrier in germanium willsilicon using the LSDA approximation are in reasonable
probably be lower than this. agreement with both experiment and other DFT calculations.
Both the hyperfine and superhyperfine motion-averaged
tensors (A7) and(ApS)) were found to be axially symmet-
F. Hyperfine and superhyperfine parameters fic about the Si-Si bond1 1 1] direction in agreement with
The hyperfine parameters depend on the spin density ithe experimental results. As Luchsinggral” found, motion
the region at and around the atomic nuclei. More specifi@veraging increases the values of all but éhe anisotropic
insight into the origin of the large measured differences behyperfine parametgof the hyperfine and superhyperfine pa-
tween hyperfine parameters for muons located at the tweameters, with the isotropicontact term on the muon being
impurity sites can be gained from a consideration of the spithe most sensitive. This is because of the very small contact
density isosurfaces. Figure 7 shows spin density contougharge density which varies quite significantly with the
plots for silicon in appropriate planes encompassing the Banuon positionFig. 8). In agreement with Luchsinget al.®
and T sites. Evidently the majority spin density around anuse of the Perdew-WahfyGGA functional did not consis-
impurity placed at the BC site is largely dispersed onto théently improve the parameter values. The results obtained for
two nearest-neighbor silicon atoms; the spin density in dhe muon at the BC site in germanium follow a similar pat-
small region around the hydrogen nucleus is comparativelyern.
small and of opposite sign. At the T site, by contrast, aimost The calculated hyperfine parameters for the T site are
all the majority spin density is localized on the defect. Fromgiven in Table V. For silicon our values are in good agree-
these calculations one therefore expects the isotropic hyper-
fine parameter at the two sites to be of opposite sign, with the

magnitude of the parameter at the BC site much smaller than S ) i
parameters for muonium in silicon on supercell size and basis set.

TABLE Ill. The dependence of hyperfine and superhyperfine

at the T site.
It is of course necessary to check the dependence of cal- : -
lated hyperfine and superhyperf ¢ th BC site 1 site
culated hyperfine and superhyperfine parameters on the su; .o pasis set A, A, A A A
percell size and basis set quality. A set of results are shown [ [ si si [

in Table Ill. The parameters appear to be reasonably well6 atom Standard —27.1 17.7 —147 —13.6 2302

converged with respect to the basis-set, but the convergena® atom Large —-21.4 130 —-114 -10.7 2366
with increasing supercell size is less good, particularly fors4 atom  Standard —-1.6 164 —91.0 —12.4 2362
the isotropic hyperfine and superhyperfine parameters at they atom Large 45 98 —57.1 —8.1 2389

BC site. The sensitivity of the isotropic parameters is due ta
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TABLE IV. Static and motion-average@hdicated by( )) hyperfine parameters for the muon at the BC
site and the nearest-neighbor atoms. PS denotes a pseudopotential calculation.

Hyperfine parameter@VHz)

Silicon Germanium

ASM Ap# ASSi Aps\ AS# Ap# ASGe ApGe
LSDA? -1.6 16.4 —-91.0 —-12.4
LSDAP —-27.1 17.7 —147 —13.6 —24.6 16.4 —-80.7 —-5.8
(LSDA)P 25 145 141 —-13.4 36 125 -755 -5.6
GGA® —89.3 18.9 —155 —-14.0 —64.6 17.1 —-81.0 —-5.9
LSDA® —104 58.5 —127 —535 - 87 64 -85 —24
PS-LSDA —26 22.8 -90 —-20.2
PS-GGA -81 27.5 —-192 —28
(PS-GGAY - 65 217 —191 ~26.2
PS-LSDA —26.8 18.1 —83.8 —22.7
PS-LSDA -35 22.3 -85 -215
Experiment -67.3 25.3 -95.1 -21.2
Experiment -96.5  34.6

&This work, 54-atom supercell and “standard” basis set.
®This work, 16-atom supercell and “standard” basis set.
‘Casarinet al. (Ref. 28.

dLuchsingeret al. (Ref. 8.

&/an de Walle(Ref. 6).

fvan de Walle and Blohl (Ref. 7.

%Kiefl and Estle(Ref. 27).

Ppatterson(Ref. 1).

ment with both experiment and previous calculations. Agairsor, in agreement with the symmetry arguments presented in
use of the Perdew-WahfgGGA functional fails to improve Sect. || D and experimental observations.
this agreement. For germanium, our value of the isotropic In a recent application of the path-integral Monte Carlo
hyperfine parameter at the T site also agrees quite well witlpproach, Miyaket al!? studied hydrogen and muonium at
the measured value. the T site in silicon, with the electron-electron interactions
The behavior of the isotropic hyperfine parameter alongcalculated within the LDA. They found the T site to be a
the[1 1 1] axis in the vicinity of the T site in silicon and local maximum in the potential energy surface, in agreement
germanium is shown in Fig. 9. Motion averaging for the with Luchsingeret al® but in disagreement with our results
muon/proton at the T site reduces the isotropic hyperfin@nd a recent plane-wave pseudopotential calculdfidineir
parameter in both silicon and germanium. The final motion-path-integral Monte Carlo study showed that quantum effects
averaged results are in reasonable agreement with experi-
ment. Motion averaging QA; resulted in an isotropic ten- TABLE V. Isotropic hyperfine parameters for the muon at the T
® site of silicon and germanium. The quoted results are for the “stan-
20 dard” basis set.

160 ' ' ' '
2 118 A, (MHz)
= 130 T - “ .
= Silicon Germanium
[]
@ 100 114
g 1o _ LSDA? 2302 2236
g 7 10 Z GGA? 2651 2548
£ =, (LSDA)? 2096 2032
[} 40 4 8 <a b
S LSDA 2362
s 10 18 (LSDA)® 2152
g »0 14 PS-LSDA 1939
= E PS-GGA 2098

_501 00 0‘75 OISO OI25 0.00 0I25 0 5(2()) LSD-VBHd 3043 3977

' ' ’ Displacement (&) ’ Experiment 2006 2360

FIG. 8. Variation of the isotropic hyperfine parameter and the’This work, 16-atom supercell.
xy component ofA, with displacement of the muon/proton from ®This work, 54-atom supercell.
the BC site. The calculations were performed in silicon with the“Luchsingeret al. (Ref. 8.
16-atom supercell and the standard basis set. The lines are guidesd{basarinet al. (Ref. 28, extended basis set.
the eye. fPattersor(Ref. 1) and references therein.
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led to a muonium distribution centered on the T site while & 2400.0
hydrogen behaved as a largely classical particle and was thus 5
distributed away from the local maximum on that site. B 22000 |
Evaluating the motion-averaged isotropic hyperfine param- ‘GE"J
eter with our hyperfine data gives a value of 492 MHz for the S 20000 |
hydrogen distribution of Miyakeet al, but 685 MHz with Y
our hydrogen distribution. Therefore, if one could measure £ 1800.0 -
the isotropic hyperfine signal dfydrogenat the T site, one § '
could deduce whether the T site is a maximum or minimum 5 1600.0 * Germanium
in the potential energy surface. 2 : o Silicon
G. Energies of a muon/proton at the T and BC sites - 140°~0_1_0 0.0 10 ]
The question of the relative stabilities of the muon and Displacement from T site in [1 1 1] direction (A)

proton at the BC and T sites is of considerable interest. For a FIG. 9. The variation in the isotropic hyperfine parameter along

particular impurity this energy difference is the sum of Con-the[l 1 1] direction at the T site in silicob4-atom supercelland

tributions from the static-lattice energy and the Zem'po'ntgermanium(lG-atom supercell A positive displacement indicates

energy. The contribution from the static lattice is sensitive 0 hovement towards the hexagonal site. The lines are guides to the
the size of the supercell and to the quality of the basis set, o

We investigated this point using the 16- and 54-atom super-

cells. We have added a BSSE correction to each of the stati
lattice energy differences quoted here. Using the LSDA, th
16-atom silicon cell and the standard basis set, the T site w
found to be 0.68 eV lower in energy than the BC site. Usingen
the large basis set reduced this to 0.33 eV. In the 54-ato
supercell and using the standard basis set the T site was 0. Jn
eV lower in energy than the BC site. With the large basis sety

this was reduced to just 0.07 eV. Thgse re;ults |nd|_cate that ithout a fully converged value for the static lattice energy
16-atom supercell is too small to give reliable estimates o ifference we are unable to draw any conclusions on the
the static-lattice energy difference between the two sites. %west energy site of the proton

summary of the computed energies that influence the relative
stabilities is given in Table VI. Within the GGA the energy
differences are similar, with the BET energy difference IV. CONCLUSIONS

being slightly smaller.

There have been several previous calculations of the We have calculated the zero-point motions and hyperfine
static-lattice energy difference between the T and BC sites iparameters of both muonium and hydrogen when present as
silicon. Using a plane-wave pseudopotential method and thanpurities in silicon and germanium crystals at the BC and T
LSDA, Chang and Chadlifound the T site to be lower in sites. The electron, muon/proton and ion motions were de-
energy, but only by an amourt0.25 eV. Luchsingeet al.®  coupled using a double adiabatic approximation, and for the
also using a plane-wave pseudopotential method, found the BC site we have included the effect of the zero-point motion
site to be 0.15 eV higher in energy than the BC site withinon the relaxation of the host lattice. The ground states of
the LSDA and 0.19 eV higher within the GGA. Note, how- both the muon and proton at the BC sites of silicon and
ever, that Luchsingeet al.” found the T site to be a local germanium are strongly confined within a potential well of
maximum in the energy and that a nearby site has an energlepth 1.37 eMsilicon) and 1.51 eV(germanium. The cal-
about 0.05 eV lower. It is clear from the various results thatculated zero-point energy of a muon at the BC site is 0.63 eV
the static-lattice energy difference between the T and BQor silicon and 0.56 eV for germanium. Despite the relatively
sites in silicon is small within the LSDA/GGA, but its pre- large zero-point energy of the muon at the BC site, it causes
cise value has yet to be settled. only a small additional outwards relaxation of the nearest-

The fact that the static-lattice energy difference is smalineighbor silicon/germanium atoms of about 0.01 A . For the
means that the zero-point energy of the impurity is crucial inproton the additional relaxations of the nearest neighbors due
determining the relative stability of the T and BC sites. For ato zero-point motion are negligible. At the T site the static
muon in silicon we have found the zero-point energy at therelaxations of the host atoms are very small and the zero-
BC site to be 0.35 eV larger than at the T site. This differ-point energy of 0.28 eM0.22 eV} for a muon in silicon
ence is large enough to to make the BC site unfavorable fofgermaniun is considerably smaller than at the BC site. It is
the muon, irrespective of which of the above values for thetherefore reasonable to assume that the additional relaxation
static-lattice energy difference is used. However, the zerodue to the zero-point motion is negligible for either a muon
point energy of the proton at the BC site in silicon is only or proton at the T site.

0.12 eV higher than at the T site. Therefore, for this impurity  The relaxation of the crystal around either the BC or T
the relative stability of the two sites depends on the precissites is practically independent of whether the impurity is a
value of the static-lattice energy difference. muon or a proton. This result confirms one of the underlying

In germanium with a 16-atom supercell, the difference inassumptions of the widely accepted configuration coordinate
static lattice energies favors the T site by 0.57 eV. The conmodel®* The potential well at the BC sites of both silicon

Q/'ergence with respect to supercell size found in silicon sug-
ests that in a fully converged LSDA calculation this differ-
ce would be smaller. We estimate that the zero-point
ergy of a muon at the BC site is 0.34 eV larger than at the
site. For a proton the corresponding value is 0.12 eV.
ese results are similar to those obtained in silicon and thus

is likely that for the muon the T site is lower in energy.



PRB 60 MUONIUM AS A HYDROGEN ANALOGUE IN SILICON . .. 13545

TABLE VI. A summary of the energies influencing the relative stability of the BC and T sites in silicon
and germanium. The importance of the zero-point energy of the muon in determining the favored site is clear.

Silicon Germanium
BC site T site BC site T site
Static lattice energy w.r.t. BC sit@V) 0 —0.07 0 -0.57
Muon zero-point energyeV) 0.6% 0.28 0.56 0.22
Total energy w.r.t. BC site for muofeV) 0 -0.42 0 -0.91
Proton zero-point energieV) 0.2¢° 0.0’ 0.18 0.08
Total energy w.r.t. BC site for protofeV) 0 -0.18 0 -0.69

a54-atom supercell and “large” basis set.
b16-atom supercell.

¢16-atom supercell and “standard” basis set.
d54-atom supercell and “standard” basis set.

and germanium is reasonably well described by a harmonibetter agreement with experiment than the only previous cal-
approximation, at least for the ground states of the muon andulation of which we are awarg.

proton. The potential well at the BC site in both materials is We have evaluated the motion averages of the hyperfine
deep enough to bind several excited states of the muon arfthd superhyperfine parameters by averaging over the squared
proton. The potential wells at the T sites in both silicon andmodulus of the wave function obtained from the full solution
germanium are not deep enough to bind the muon which i§f the muon/proton Schdinger equation in the potential
free to diffuse through the interstitial region, although ourWell. The symmetry of the potential wells requires that the

calculations suggest that the proton is bound at this site atymmetry of the motion-averaged hyperfine tensors at the T
T=0 K. and BC sites are the same as if the muon/proton was situated

Various LSDA and GGA calculations have indicated tha.[exactly at the sites. We have obtained detailed information
the energies for a static muon or proton at the BCand T site§bOUt the variation of the hyperfine and superhyperfine pa-
rameters with the position of the muon/proton. Our results

in silicon are very similar. However, we have calculated the how that moti ing for th Iorot t the BC
difference in zero-point energies of a muon at the T and pcow that motion averaging for the muon/proton at the

sites in silicon(germaniun to be 0.35 eV(0.34 eV}, which site in silicon and germanium increases the values of all of
is sufficient to make the T site more stable, whe,ther we ast—he_3 hyper_fine and _superhyperfinfe parameters apart from _the
sume our value for the static-lattice energy difference pednisotropic hyperfine term which decreases slightly, in

. . . 8 .
tween the BC and T sites or those of oth&fsThis result is g]greementt_ W'thf me .cort1clu_S|or:15 off.Lucthsm%ral. With I of
in conflict with the interpretation of experimental data. € exception of the I1SotropiC hypertine term however, all 0

The hyperfine parameters calculated for silicon in our all—the changes are small. At the T sites in silicon and germa-

electron calculations are close to those obtained in planéj'um’ motion averaging reduces the isotropic hyperfine pa-

wave pseudopotential calculations. This agreement confirm@meter.
that the procedure used to correct for the pseudopotential and

for the incomplete plane-wave basis sets are accurate. For
silicon our static LSDA results are in reasonable agreement We thank R. Q. Hood and M. I. J. Probert for useful
with other LSDA results and experiment. Our hyperfine pa-discussions. Financial support was provided by the Engineer-
rameter for the muon at the T site in germanium is in muching and Physical Sciences Research Coufii).
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