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Muonium as a hydrogen analogue in silicon and germanium:
Quantum effects and hyperfine parameters

A. R. Porter, M. D. Towler, and R. J. Needs
TCM Group, Cavendish Laboratory, Madingley Road, Cambridge CB3 0HE, United Kingdom

~Received 8 March 1999!

We report a first-principles theoretical study of hyperfine interactions, zero-point effects, and defect ener-
getics of muonium and hydrogen impurities in silicon and germanium. The spin-polarized density-functional
method is used, with the crystalline orbitals expanded in all-electron Gaussian basis sets. The behavior of
hydrogen and muonium impurities at both the tetrahedral and bond-centered sites is investigated within a
supercell approximation. To describe the zero-point motion of the impurities, a double adiabatic approximation
is employed in which the electron, muon/proton, and host lattice degrees of freedom are decoupled. Within this
approximation the relaxation of the atoms of the host lattice may differ for the muon and proton, although in
practice the difference is found to be slight. With the inclusion of zero-point motion the tetrahedral site is
energetically preferred over the bond-centered site in both silicon and germanium. The hyperfine and super-
hyperfine parameters, calculated as averages over the motion of the muon, agree reasonably well with the
available data from muon spin resonance experiments.@S0163-1829~99!01643-4#
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I. INTRODUCTION

Hydrogen has a wide range of physical effects in se
conductors, including the passivation of states associ
with deep-level impurities, enhancement of the diffusivity
oxygen, and the formation of large, planar structures kno
as platelets.1 It is present in large quantities during the pr
cessing stages of device manufacture and is one of the c
monest impurities in technologically important materia
such as silicon and germanium. Since hydrogen impuri
can have significant effects on semiconductor electrical pr
erties, a more complete understanding of their behavio
the microscopic level is desirable.

Paramagnetic hydrogen centers can in principle be stu
using the electron paramagnetic resonance technique. In
mation on their local environment is obtained by followin
the time evolution of the signal corresponding to the co
pling of the impurity spin with an external electromagne
field. However, few studies have been reported for hydro
in semiconductors because the hydrogen atoms are m
and diffuse to defects where they form passivated co
plexes. The transient centers of isolated hydrogen impur
are nevertheless of significant interest because of their
volvement in diffusion processes. These centers may be s
ied using muon spin resonance techniques in which mu
having the same charge as a proton but only about one n
of the mass, are used as proton analogues. A muon can
ture an electron to form a hydrogenlike bound state known
muonium, which is given the symbol Mu. Transient cent
of implanted positive muons in semiconductors may be st
ied as the muon has a lifetime of just 2.2ms and diffuses to
locally stable sites within a few nanoseconds. The short l
time also means that there is almost never more than
muon in the sample at any one time, and that the distribu
of muons does not reach true thermal equilibrium. In a mu
spin resonance experiment fully polarized positive muons
injected into the sample, and by observing the positrons p
PRB 600163-1829/99/60~19!/13534~13!/$15.00
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duced by the decay of the muons one can obtain informa
about the defect.1

WhenmSR experiments are performed on silicon or g
manium, two different hyperfine signals are observed. O
of these is entirely isotropic while the other has an ani
tropic ~dipolar! component with uniaxial symmetry along th
@1 1 1# axis.1 The impurity responsible for the former sign
is usually referred to as normal muonium~Mu! and that for
the latter, anomalous muonium~Mu* !. Normal muonium has
been identified as muonium in the interstitial region, pro
ably in the vicinity of the tetrahedral~T! interstitial site. Sy-
mons and Cox2 first suggested that anomolous muonium c
responds to a neutral muonium at the bond-centered~BC!
site and this has been borne out by a number of theore
studies. The various experimental data for muonium in s
con have been interpreted in terms of a configurati
coordinate diagram.3,4

The majority of recent theoretical work in this area h
been at the first-principles level within an adiabatic appro
mation, using the local spin density~LSDA! or generalized
gradient~GGA! approximations to density-functional theor
~DFT!.5 Calculations using pseudopotentials and plane-w
basis sets6–8 have been reasonably successful in reproduc
the hyperfine and superhyperfine parameters observed in
periments. These studies have shown that hydrogen imp
ties at the T and BC sites have similar energies.8,9

The Feynman path-integral10 method allows the quantum
nature of the muon to be included within finite temperatu
studies. However, the large computational demands of s
an approach have limited its use to date. Ramı´rez and
Herrero11 used the path integral molecular-dynamics meth
to study hydrogen and muonium in silicon with the H/Mu-
interaction described by an empirical three-body potent
However, the results appear to be in conflict with expe
ment. Recently, Miyakeet al.12 applied the path-integra
Monte Carlo technique to the study of hydrogen and m
nium at the T site in silicon, with the electron-electron inte
actions described within the LDA. Despite finding the T s
13 534 ©1999 The American Physical Society
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PRB 60 13 535MUONIUM AS A HYDROGEN ANALOGUE IN SILICON . . .
to be a local maximum of the potential energy surface, th
found the muon distribution to be peaked at that site beca
of the quantum motion.

In this paper we employ all-electron DFT calculatio
within a double adiabatic approximation to study muoniu
and hydrogen at the BC and T sites in silicon and germ
nium. The use of all-electron calculations allows an asse
ment of the accuracy of the correction procedures which
used to obtain the hyperfine and superhyperfine parame
in pseudopotential calculations.7 The use of a double adia
batic approximation allows us to obtain both the zero-po
energy and wave function of the impurity. Our inclusion
the zero-point motion is at a level beyond previous fir
principles calculations since the positions of the host silic
or germanium atoms are allowed to relax in the presenc
the zero-point motion of the impurity. At this level of ap
proximation the relaxations of the host lattice are differe
for a muon and a proton. Our calculations thus allow
assessment of the differences in the potentials felt by the
impurities, thereby testing one of the assumptions underly
the configuration-coordinate diagram3,4 used to interpret ex-
perimental data.

II. METHOD

A. All-electron spin-polarized LSDA-DFT calculations

The calculations reported here were performed with
CRYSTAL95 software package13 using the spin-polarized
density-functional method,14,15 together with both local den
sity and gradient corrected approximations to the exchan
correlation functional@the Perdew-Zunger LSDA~Ref. 16!
and the PW91 form of the GGA~Ref. 17!#. The calculations
were performed within a periodic supercell approach wit
single hydrogen impurity in face-centered cubic superc
containing either 16 or 54 silicon or germanium atoms. F
ure 1 shows the relaxed atomic environments of a sin
muon at both bond-centered and tetrahedral sites in silic
The measured lattice constants~5.429 Å for silicon and
5.6579 Å for germanium! were used in all calculations.

The use of local basis functions requires the real sp
Coulomb and exchange series to be limited and appr
mated as described in Refs. 13 and 18; the accuracy
which the various Gaussian integrals are computed is c
trolled by classifying basis function pairs according to ov
lap or penetration criteria defined by five parameters, wh

FIG. 1. The muon/proton at the bond-centered~a! and tetrahe-
dral ~b! sites in silicon. The dashed circles in~a! show the unrelaxed
positions of the silicon atoms. These are not shown in~b! because
the relaxations around the T site are negligible.
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in this study were set to 1027, 1026, 1027, 1027, and
10214.13 This is normally sufficient to give a numerical erro
of less than 0.001 eV/atom in the relative energies of diff
ent structures. The reciprocal space integrations necessa
reconstruct the density matrix in real space at each s
consistent cycle were approximated by summing over a
of k points belonging to a mesh of Monkhorst-Pack19 type
centered on the origin in reciprocal space. The converge
of both the total energy and the isotropic hyperfine param
of the muon with respect to the reciprocal space samp
density was investigated. A 43434 k-point mesh was
found to be sufficient for the 16-atom supercell. With th
mesh, the total energy and isotropic hyperfine parameter
within 0.0025 eV/atom and 3 MHz of their fully converge
values, respectively. A 33333 k-point mesh was used fo
the 54-atom supercell, which also gives excellent conv
gence. The convergence of various quantities with respec
the supercell size and basis set is discussed in Sec. III.

A hydrogen impurity introduces a defect state into t
band gap of the host crystal. Finite supercell sizes give
to interactions between the defects in different cells and t
to a small but potentially significant dispersion in the defe
band. This dispersion could lead, for example, to overlap
the majority spin defect band with the minority spin defe
band and/or the silicon valence/conduction bands. In eit
case an unphysical conducting state is formed. This prob
is not entirely eliminated even with the use of the larg
54-atom supercell. However, judicious use of the lev
shifting convergence technique13,20 allows a small decou-
pling of unoccupied and occupied states which prevents
system entering a conducting state. Population analysi
the final self-consistent wave function revealed that each
percell contained a single extra majority spin electron as
pected on physical grounds. The calculations thus corre
model this aspect of the behavior of a single impurity in
large crystal, which is necessary in order to obtain phys
hyperfine and superhyperfine parameters.

B. Gaussian basis sets

The Bloch functions required to expand the Kohn-Sh
orbitals in the solid-state band-structure problem are b
from periodic arrays of atom-centered Gaussian functio
One motivation for the use of such a basis set is that
electrons in the system may be treated explicitly, allowi
the spin density at and around the nucleus~and hence the
hyperfine parameters! to be calculated directly without re
sorting to correction procedures of the sort required
pseudopotential calculations.7

The basis set used for the majority of the silicon calcu
tions was of the types~8!sp~8!sp~3!sp~1! where the numbers
in brackets refer to the number of contracted primitive Ga
sians making up each shell. For convergence checking
also used a higher quality silicon set with an additionad
polarization function of the types~8!sp~8!sp~1!sp~1!sp~1!sp
~1!d~1!. The basis set used for the germanium calculatio
wass~9!sp~7!sp~6!sp~3!sp~1!d~6!d~1!.

An uncontracted basis of elevens functions and a singlep
function was used for the hydrogen atom. Such a large
~mainly consisting of functions with relatively high expo
nents! was found to be necessary to compute accurate hy
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13 536 PRB 60A. R. PORTER, M. D. TOWLER, AND R. J. NEEDS
fine parameters. A spin-unrestricted Hartree-Fock calcula
of the total energy of the free atom with this basis gav
20.49988 Ha, which is close to the exact result of20.5 Ha.
The isotropic hyperfine parameter was 1421.9 MHz co
pared with the exact value of 1422.8 MHz. The correspo
ing values obtained from an LSDA-DFT calculation wi
this basis set were20.47833 Ha~which is very close to the
value of20.47885 Ha obtained from an atomic code usi
integration on a very fine grid! and 1356.6 MHz.

Optimal Gaussian basis sets for close packed solids
significantly different from those appropriate to the atom
and molecular cases. In particular, careful optimization
required to avoid the problems of linear dependence and
sis set superposition error due to the overlap of diffuse fu
tions. In this paper we used the following procedure.
basis-set parameters were first optimized in the free at
The exponents and contraction coefficients of the vale
functions in silicon and germanium were then reoptimized
the pure bulk material. Finally, a hydrogen atom was inser
at a bond-centered site, the positions of the nearest-neig
silicon/germanium atoms relaxed, and the parameters of
valence functions of each atom again reoptimized. To
the transferability of the optimized basis sets the hydro
was displaced from the BC site along the bond by 0.27
and the basis function parameters were reoptimized for
new geometry. The energy as a function of displacem
along the bond was calculated for each of these two b
sets. The variation in energy was essentially the same.

The final exponents and contraction coefficients of all
basis sets employed in this study are available elsewher21

It is important to investigate the possibility of basis-s
superposition error~BSSE! in defect energetics calculation
using localized basis sets. The basis sets for the host la
atoms are necessarily incomplete. Inserting an impurity a
allows additional variational freedom in the description
the atoms adjacent to the defect site, particularly when
impurity is described by a relatively diffuse basis set. T
can distort the relative stabilities of defects at impurity si
of differing local geometry. In the present case, the hydro
impurity is considerably closer to its neighbors at the BC s
than at the T site, and thus one may expect the BC site t
artificially stabilized with respect to the T.

This expectation is confirmed by an estimate of the BS
using a counterpoise correction.22 For the 16-atom supercel
addition of ‘‘ghost’’ hydrogen basis functions into the r
laxed silicon lattice lowered the energy per cell by 0.199
~BC site! and 0.068 eV~T site! with the smaller silicon basis
and by 0.0533 eV~BC site! and 0.0243 eV~T site! with the
larger silicon basis. In germanium, the energy is lowered
0.251 eV~BC site! and 0.0534 eV~T site! by the same pro-
cedure. Inclusion of a lattice of ‘‘ghost’’ silicon/germanium
functions around a hydrogen atom lowered the energy
less than 0.0005 eV. These numbers may be taken to gi
rough indication of basis set incompleteness in each cas
can thus be concluded that in silicon the BSSE lowers
energy of the BC site over that of the T site by around 0
eV with the smaller basis, but by only 0.03 eV with th
larger set. The corresponding correction for the german
case is 0.20 eV.
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C. Calculation of zero-point motion

To calculate the zero-point motion of the muon/proton
used a double adiabatic approximation in which the motio
of the electrons and of the muon are decoupled from
motion of the atomic nuclei, and the electronic motion
decoupled from that of the muon. The approximation is ju
tified because a muon is 207 times heavier than an elec
and 243 times lighter than a silicon nucleus. For a proton
equivalent factors are respectively 1836 and 28; the dec
pling of the proton and silicon motion is thus somewhat le
justified. The mass differences are more favorable for
heavier germanium nucleus.

The positions of the silicon/germanium nuclei are deno
by rn , the muon or proton positions byrm , and the electron
positions byre . Within the double adiabatic approximatio
the wave function is written as a product of nuclear, muo
proton and electronic parts,

C~re ,rm ,rn!5cn~rn!Xm~rm ;rn!fe~re ;rm ,rn!, ~2.1!

where the variables to the right of the semicolons appea
parameters and those to the left are dynamical variab
Within the double adiabatic approximation the three wa
functions each satisfy separate Schro¨dinger equations

Ĥe~re ;rm ,rn!fe~re ;rm ,rn!5Ee~rm ,rn!fe~re ;rm ,rn!,

~2.2!

Ĥm~rm ;rn!Xa
m~rm ;rn!5Ea

m~rn!Xa
m~rm ;rn!, ~2.3!

Ĥnca
n~rn!5Ea

nca
n~rn!. ~2.4!

The subscripta labels the different eigenstates of the muo
Although only the ground state of the nuclear wave funct
is considered here, it is also labeled bya since it depends on
the chosen muon eigenstate. The different electronic eig
states are not labeled, since it is only the ground state of
electronic wave function as a function of the muon a
nuclear positions that is of interest in the current work. T
three Hamiltonians are

Ĥe~re ;rm ,rn!5T̂e~re!1Vee~re!1Ven~re ,rn!1Vem~re ,rm!,

~2.5!

Ĥm~rm ;rn!5T̂m~rm!1Vmm~rm!1Vmn~rm ,rn!1Ee~rm ,rn!,

~2.6!

Ĥn~rn!5Vnn~rn!1Ea
m~rn!, ~2.7!

whereT̂ is the kinetic operator andVab is the Ewald inter-
action between particles of typesa andb. The termVmm is a
constant describing the interactions between the impurity
oms in different supercells. The electronic energy,Ee, ap-
pears as an effective potential in the muonic Hamiltoni
Eq. ~2.6!. Hence, when Eq.~2.3! is solved, the resulting en
ergy includes the electronic contribution. This energy th
appears in the nuclear Hamiltonian as an effective poten
Thus the total energy of the system is given by the eig
value in Eq.~2.4!.

In order to find a good starting point for the BC calcul
tions we performed LSDA calculations with the muon/prot
fixed at the bond center. The positions of the nearest
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PRB 60 13 537MUONIUM AS A HYDROGEN ANALOGUE IN SILICON . . .
next-nearest neighbor~NN and NNN! silicon/germanium at-
oms were then relaxed. For the T site the muon/proton
held fixed at the T site while the four NN silicon/germaniu
atoms were relaxed in the radial direction.

The next step is to calculate the potential experienced
the muon/proton in the crystal by solving the electron
Schrödinger Eq.~2.2! within the LSDA, as a function of the
parametersrm and rn . For the BC site calculations, the pa
rametersrn were varied by considering four different add
tional relaxations of the NN silicon atoms along the@1 1 1#
direction. For each of the positions of the NN silicon atom
the NNN atoms were relaxed. We then performed a furt
twelve LSDA calculations as a function of the position of t
muon/proton for each of these nuclear configurations in
der to map out the required potential energy surfaces
similar procedure was used for germanium. For the T site
static relaxation of the NN atoms is very small and we
sumed that the zero-point motion of the muon/proton wo
not give any additional relaxation.

In order to solve Eq.~2.3! for the muon/proton wave func
tion, we used a fitted polynomial for the energyEe(rm ,rn).
For the BC site we use a cylindrical coordinate system w
the origin at the BC site and thez andr coordinates directed
along the bond and in the plane perpendicular to the bo
respectively. We have neglected theu dependence of the
potential. This assumption was checked by displacing
muon by 0.53 Å from the BC site along the@21 1 0# direc-
tion and then rotating it about the@1 1 1# axis. The maximum
variation seen in the energy of the 16-atom supercell du
the rotation was just 0.002 eV. The Taylor expansion of
cylindrically symmetric potential, neglecting sixth-ord
terms and higher, is

VBC~r,z!5VBC~0,0!1br21gz21dr2z21zr41hz4.
~2.8!

As a further simplification in order to avoid costly, low
symmetry calculations, thedr2z2 term was neglected. Th
resulting Schro¨dinger equation is separable. In order to che
the assumption ofr –z separability, a few calculations wer
performed with the muon at points where both ther and z
coordinates were nonzero. These energies were then c
pared with those predicted by the fitted potential neglect
the term inr2z2. The errors due to neglecting ther2z2 term
increased only slowly away from the BC site, and the cor
sponding error in the ground-state energy is small beca
the wave function of the muon/proton is localized around
BC site. The values of the parameters in Eq.~2.8! were ob-
tained by a least-squares fit using twelve energies for dif
ent values ofrm ~for fixed rn). The resulting parameter va
ues are given in Table I.

The polynomial expansion for the energy surface arou
the T site is the Taylor expansion which is invariant under
of the 24 rotations forming the groupTd . Cartesian coordi-
nates centered at the T site were used, and in order to ob
a good fit to the energy surface it was found necessar
include terms up to sixth order
s
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VT~x,y,z!5VT~0,0,0!1a2~x21y21z2!1a3xyz

1a4~x41y41z4!1b4~x2y21x2z21y2z2!

1a5xyz~x21y21z2!1a6~x61y61z6!

1b6~x2y41x2z41x4y21x4z21y2z41y4z2!

1c6x2y2z2. ~2.9!

The fitted values of the parameters in this equation are gi
in Table II.

The solution of the muon/proton Schro¨dinger Eq.~2.3!
was obtained by diagonalizing within a basis of harmo
oscillator eigenfunctions centered on either the BC or T s
We constructed muon and proton basis sets consisting o
solutions of the harmonic part of the calculated potential

V0BC
5VBC~0,0,0!1b~x21y2!1gz2,

V0T
5VT~0,0,0!1a2~x21y21z2!,

using the appropriate particle masses.

TABLE I. The values of the parameters in Eq.~2.8! defining the
potential well at the BC site of silicon and germanium. The fit
applicable within a cylinder centered on the BC site of radius 1.0
~1.1 Å! in the plane perpendicular to the bond and up to60.5 Å
~0.37 Å! along the direction of the bond in silicon~germanium!.
The units are such that if the lengths in Eq.~2.8! are expressed in
Bohr radii then the potential energy is in Ha. N.B. The valu
quoted are those used in the zero-point calculation and the num
of significant figures should not be taken as an indication of
accuracy of the fit.

Silicon Germanium

b 0.005 887 53 0.006 107 11
g 0.080 768 9 0.054 851 7
d 0.0 0.0
z 0.000 337 036 0.000 224 779
h 0.065 464 3 0.050 623 8

TABLE II. The parameters defining the expansions@Eq. ~2.9!#
of the potential energy surface around the T site in silicon a
germanium. The fit is applicable over the region bounded b
sphere of radius 1.0 Å centered on the T site. The units are such
if the lengths in Eq.~2.9! are expressed in Bohr radii then th
potential energy is in Ha. N.B. The values quoted are those use
the zero-point calculation and the number of significant figu
should not be taken as an indication of the accuracy of the fit.

Silicon Germanium

a2 0.004 404 92 0.001 512 69
a3 0.005 898 98 0.005 424 89
a4 20.001 975 27 0.000 339 949
b4 0.000 930 883 20.000 160 207
a5 20.004 561 77 20.003 111 44
a6 0.001 557 53 0.000 775 975
b6 20.000 556 122 20.000 277 064
c6 0.006 965 01 0.003 470 02
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Having constructed our basis functions we consider
full potentials, which are written as the sum of harmonic a
anharmonic terms

VBC5V0BC
1DVBC ~2.10!

VT5V0T
1DVT . ~2.11!

The Hamiltonian matrix elements were calculated in the
sis of the harmonic solutions and the resulting matrix eq
tions were diagonalized. A basis set constructed from
Hermite polynomials up to and including eighth order a
containing a total of 729 basis functions was found to
sufficient to obtain converged values for at least the low
six eigenvalues,Ea

m(rn), of the system with the muon/proto
at the BC site. At the T site it was necessary to include
Hermite polynomials up to twelfth order, which gave 21
functions.

The solution of Eq.~2.7! is trivial as the operator is mul
tiplicative and the eigenfunctions are delta functions. T
total energy,Ea

n , is therefore the sum ofEa
m(rn) and the

Ewald energy of the lattice of host atoms,Vnn(rn).

D. Hyperfine and superhyperfine parameters
and motion averaging

The components of the hyperfine tensor,A, define the
spin Hamiltonian for the hyperfine interaction between
spins of an electron and a nucleus

Ĥs5Se•A–Sn . ~2.12!

The hyperfine tensor is normally split into isotropic and a
isotropic parts,

A5AsI1Ap , ~2.13!

where I is the (333) unit matrix. The isotropic hyperfine
parameter~or superhyperfineparameter when it is calculate
at a nearest neighbor of the impurity! is given by

As5
2m0

3
gem

egnmnrs~rn!5104.982gnrs~rn! @MHz#.

~2.14!

wherem0 is the permeability of free space,me is the Bohr
magneton,mn is the nuclear magneton andge andgn are the
electron and nuclearg factors.23 The position of the nucleus
is denoted byrn andrs5r↑2r↓ @bohr23#.24

The anisotropic part of the hyperfine tensor is given b

Ap5
m0

4p
gem

egnmnE T~r !rs~r1rn!dr

512.531gnE T~r !rs~r1rn!dr @MHz# ~2.15!

whereT(r ) is a traceless tensor,

T~r !5
1

r 5 S 3x22r 2 3xy 3xz

3xy 3y22r 2 3yz

3xz 3yz 3z22r 2
D , ~2.16!
e
d

-
-
ll

e
st

ll

e

e

-

and the origin of coordinates is atrn . For a particle located
precisely at the BC site the hyperfine tensor has axial s
metry about the@1 1 1# axis and thusAp has the form

Ap5ApS 0 1 1

1 0 1

1 1 0
D , ~2.17!

with Ap being the anisotropic hyperfine parameter at t
site. For a particle located precisely at the T site, all eleme
of Ap are zero and hence the hyperfine tensor is purely
tropic.

In reality the muon/proton will explore the environme
around these sites by virtue of its zero-point motion a
thermal effects. In order to account for the zero-point mot
the hyperfine interaction tensor must be averaged over
squared modulus of the muon/proton wave function

^A&m5E uX~rm ;rn!u2A~rm!drm . ~2.18!

To evaluate the integral for each component ofA we fit
As(xm ,ym ,zm) and each of the six distinct elements of th
symmetric tensorAp(xm ,ym ,zm) to polynomial expressions
of the correct symmetry. Since the muon/proton wave fu
tion is expanded in terms of Hermite polynomials, analy
expressions for the elements of^A&m may be obtained.

For the isotropic hyperfine parameters the polynomial
pression forAs(xm ,ym ,zm) has the same symmetry as th
relevant potential energy surface. These parameters were
panded in sixth-order polynomials. The polynomial descr
ing the isotropic superhyperfine parameter at the BC
contains terms that are odd inzm . ~Superhyperfine param
eters were not calculated for the T site.! Each of the elements
of Ap

T andAp
BC were fitted to second-order polynomials of th

correct symmetry.
We now consider the symmetry of the hyperfine ten

including the effects of zero-point motion. Within the doub
adiabatic approximation the muon motion is described by
wave function X(rm ;rn). The motion-average of the
ab-component (a,b5x,y,z) of the anisotropic hyperfine
tensor is given by

^Aab&m5CE E uX~rm ;rn!u2rs~r1rm!Tab~r !drdrm ,

~2.19!

whereC is a constant,rs is the electron spin density, an
Tab denotes the components of the tensorT defined in Eq.
~2.16!.

The muon/proton may be said to be trapped in a poten
well if its wave function is negligibly small outside of a
equipotential-energy surface enclosing the region. The m
wave function,X, is the nondegenerate ground state of t
potential well and therefore has the full point-group symm
try of the well, i.e.,

P~Qi !X~rm ;rn!5X~Ri
21rm ;rn!5X~rm ;rn!, ~2.20!

whereP is a scalar transformation operator,Qi is an opera-
tion of the point group of the well, andRi is the correspond-
ing transformation matrix. The electron spin densi
rs(r1rm), satisfies
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P~Qi !rs~r1rm!5rs„Ri
21~r1rm!…5rs~r1rm!.

~2.21!

^Aab&m is unchanged by a scalar transformation of the in
grand, i.e.,

^Aab&m5CE E P~Qi !

3@ uX~rm ;rn!u2rs~r1rm!Tab~r !#drdrm .

~2.22!

^Aab&m is again unaltered if we sum over thei operations
and divide by their numberN,

^Aab&m5
C

N (
i
E E P~Qi !

3@ uX~rm ;rn!u2rs~r1rm!Tab~r !#drdrm .

~2.23!

Using Eqs.~2.20! and ~2.21! we have

^Aab&m5
C

NE E uX~rm ;rn!u2rs~r1rm!

3F(
i

P~Qi !Tab~r !Gdrdrm . ~2.24!

The symmetry properties of̂Aab&m are easily obtained
from Eq. ~2.24!. For example, ^Axy&m5^Ayz&m if
( i P(Qi)xy5( i P(Qi)yz. Taking the specific case of the
site, it is easily shown that( i P(Qi)xy5( i P(Qi)yz50,
where the sum is over the 24 operations of the tetrahe
point group. Similar arguments show that all the elements
^Aab&m are zero for the T site. Similarly, for the BC site w
find that all off-diagonal elements of^Aab&m are equal, and
the diagonal elements are zero.

If the zero-point motion of the muon is neglected th
uX(rm ;rn)u25d(rm2r0), where r0 is the position of the
muon. It follows that if the muon is placed at an invaria
point of the symmetry group of the well, then including th
zero-point motion does not change the symmetry of the
isotropic hyperfine tensor. This explains why the zero-po
motion does not affect the symmetry of the anisotropic
perfine tensor for either the T or BC sites.

The presence of the muon could lead to a symmetry lo
ering distortion of the host lattice, in which case the app
priate point group is the lower symmetry one. We have
considered the possibility of symmetry lowering distortio
in our calculations because of the computational cost
evaluating the energyEe(rm ,rn) of Eq. ~2.2! for the required
atomic configurations. However, we believe such distortio
to be unlikely for the cases considered here.

III. RESULTS

A. Static relaxations

The static relaxations~neglecting zero-point motion! are,
of course, identical for the muon and proton. Calculatio
with the muon/proton fixed at the BC site of the 16-ato
silicon cell showed that the two nearest neighbors of
-

al
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t
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-
-
t

f

s

s

e

muon/proton relax outwards from the muon/proton by 0.
Å along the@1 1 1# axis with the NNN’s relaxing by 0.01 Å
in the same direction. The corresponding relaxations for
54-atom supercell were 0.39 and 0.02 Å. These values
close to the plane-wave pseudopotential results
Luchsingeret al.7 who obtained relaxations of 0.45 Å for th
NN silicon atoms and 0.07 Å for the NNN’s. For the 16
atom germanium cell the corresponding relaxations w
0.44 Å for the NN’s and 0.02 Å for the NNN’s. Our NN
relaxation is in good agreement with the value of 0.42
calculated by Vogelet al.25

At the T site, the NN atoms in the host lattice were a
lowed to relax in the radial direction. The relaxations in si
con and germanium were approximately equal and v
small; just 0.02 Åtowards the muon/proton in the 16-atom
supercell and 0.03 Å~in the same direction! in the 54-atom
supercell. Again, this is in agreement with the ‘‘negligible
relaxation for the T site in silicon found by Luchsingeret al.

B. Relaxations including zero-point motion

The influence of the zero-point motion of the muo
proton on the relaxation of the silicon/germanium host latt
was studied by calculating the total energy,Ea

n , of Eq. ~2.4!,
for different relaxations of the NN host atoms, as describ
in Sec. II C.

For the BC site four different relaxations of the NN
were considered, and for each of these the six NNN’s w
also relaxed. The NN relaxations are in addition to the sta
relaxations given in Sec. III A. The inclusion of the zer
point energy of the muon was found to give only a sm
correction to the static relaxations; the NN silicon atoms
laxed outwards by just an additional 0.01 Å in the@1 1 1#
direction, so that the final separation of the muon from a N
silicon atom is 1.58 Å in the 16-atom supercell. The mu
smaller zero-point energy of the heavier hydrogen impu
is small compared with the increase in energy of the cry
as the separation of the NN atoms is increased and thus t
is no additional relaxation. As a check on the finite-size
rors, the energies of five geometries were recalculated u
the 54-atom supercell. These energies and the correspon
potential energy curves calculated within the 16-atom sup
cell are shown in Fig. 2. The very small differences betwe

FIG. 2. The square of the proton~thin solid line! and muon
~dashed line! wave functions at the BC site in silicon. The symbo
denote the potential well for the 16- and 54-atom supercells, and
thick solid line is the fit of the 16-atom data to Eq.~2.8! with the
parameters of Table I.
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the 16-atom and 54-atom results justify the use of the
atom supercell in calculations of the shape of the poten
well at the BC site.

The story is very similar for the BC site in germanium
When the zero-point energy of the muon is included,
relaxation of the NN atoms again increases by just 0.01 Å
that the final separation of the muon from a NN germani
atom is 1.69 Å in the 16-atom supercell. Once more,
smaller zero-point energy of the proton means there is
additional relaxation due to quantum effects. Figure 3 sho
the potential energy well and calculated wave functions
the muon and proton at the BC site in germanium.

C. Zero-point energies

The zero-point energy of the muon at the BC site w
calculated to be 0.63 eV in silicon and 0.56 eV in germ
nium. It is perhaps surprising that such large zero-point
ergies have so little effect on the relaxations. As shown
Fig. 4, the potential well is narrow in the direction along t
bond and wider perpendicular to the bond. Within the h
monic approximation one can decompose the zero-point
ergy into contributions from the well along and perpendic
lar to the bond. For a muon at the BC site in silicon this giv
0.47 eV in the direction along the bond and 0.22 eV perp
dicular to the bond.~The sum of these differs from the fu
zero-point energy of 0.63 eV because the latter does

FIG. 3. The square of the proton~thin-solid line! and muon
~dashed line! wave functions at the BC site in germanium. Th
symbols denote the potential well for the 16-atom supercell, and
thick solid line is the fit to Eq.~2.8! with the parameters of Table I

FIG. 4. The calculated potential experienced by the mu
proton in the$110% planes for the BC site in silicon. The figur
shows both of the NN and two of the NNN silicon atoms of t
muon/proton with the bond lengths drawn to scale. The conto
range from 0.1 to 0.7 eV in increments of 0.1 eV.
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assume the harmonic approximation.! The corresponding en
ergies for germanium are 0.37 eV and 0.22 eV in the dir
tions along and perpendicular to the bond, respectively. If
were to consider only the zero-point energy in the direct
along the bond then the outwards relaxation of the silic
germanium atoms would be larger; approximately 0.03 Å
silicon and more than 0.025 Å in germanium. Although t
component of the zero-point energy along the bond is s
nificantly reduced by further outward relaxation of th
silicon/germanium atoms, the potential well also gets n
rower in the plane perpendicular to the bond, which tends
increase the zero-point energy. The narrowing of the pot
tial well in the plane perpendicular to the bond correla
with the narrowing of the bonding charge cloud as the bo
lengthens.

Our result of 0.63 eV for the zero-point energy of th
muon at the BC site in silicon is close to the value of 0.54
obtained by Claxtonet al.26 from Hartree-Fock calculations
on Si26H30 clusters. In that calculation the potential well
the BC site was assumed to be cylindrically symmetric ab
the bond~as it is in this paper! and the resulting Schro¨dinger
equation was solved within the harmonic approximation.

The larger mass of the proton significantly reduces
quantum effects. We calculated the zero-point energy o
proton at the BC site to be 0.20 eV in silicon and 0.18 eV
germanium. Our value for silicon is close to that of 0.18 e
obtained by Luchsingeret al.7 within the harmonic approxi-
mation.

In contrast to the results of plane-wave pseudopoten
calculations,8,29 we find the T site corresponds to a loc
minimum in the potential energy surface. This is, howev
in agreement with a more recent plane-wave pseudopote
study.30 The calculated energy surface along the@1 1 1# di-
rection is shown in Fig. 5. It turns out that the muon/prot
is not strongly bound in our potential well, which turns ov
at the hexagonal site situated at a distance of 1.18 Å from
T site along the@1 1 1# direction. To confine the muon
proton in the well we therefore constrained the fit to prev
the potential turning over, as shown in Fig. 5. The zero-po
energy of the muon/proton calculated in such a well is th

e

/

rs

FIG. 5. The square of the proton~thin-solid line! and muon
~dashed line! wave functions at the T site in silicon. The symbo
denote the potential well for the 54-atom supercell, and the th
solid line is the fit to Eq.~2.9! with the parameters of Table II. The
potential has a maximum at the hexagonal site situated at 1.1
from the T site, but the fit has been constrained so that it form
simple potential well.
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an upper bound on the true value, but as the wave func
decays quite rapidly away from the T site this bound is
curate.

In contrast to the BC site, investigation of the finite-si
effects present in the calculation of this energy surfa
showed that while the results in the 16- and 54-atom su
cells were qualitatively similar, they differed significantly
the openness and depth of the potential well. As a result,
calculation of the zero-point energy, etc. of the muon/pro
at this site was carried out using the potential well obtain
from the 54-atom supercell. The expense of the LSDA c
culations with this supercell made the generation of d
points off the@1 1 1# axis too costly. Therefore, the thre
parameters left undetermined after the one-dimensional fi
the data on the@1 1 1# axis were assigned the values obtain
in the fit to the 16-atom supercell data. This is not a criti
choice since the one-dimensional fit has already constra
the energy surface in eight directions~due to the symmetry
of the T site!. This procedure was also used to generat
three-dimensional potential-energy function from the fit
data along the@1 1 1# axis ~calculated using the 16-atom
supercell! at the T site in germanium. The parameters o
tained from these fits are given in Table II.

For a muon at the T site the zero-point energy was ca
lated to be 0.28 eV in silicon and 0.22 eV in germanium. F
a proton the corresponding values are 0.09 and 0.06 eV.
ground-state wave functions of the muon/proton along
@1 1 1# axis in silicon are shown in Fig. 5 and those
germanium in Fig. 6. The results for germanium must
considered approximate since we have not calculated
data points off the@1 1 1# axis in this case. In addition, th
16-atom supercell was used for all of the germanium ca
lations and therefore it follows from the behavior found
silicon that the true potential energy surface will be mo
open than the one we have obtained.

D. Excited states of the muon and proton

For a muon at the BC site in silicon our zero-point ener
of 0.63 eV is considerably smaller than the well depth
1.37 eV, indicating the possibility that excited states of

FIG. 6. The square of the proton~thin-solid line! and muon
~dashed line! wave functions at the T site in germanium. The sy
bols denote the potential well for the 16-atom supercell, and
thick solid line is the fit to Eq.~2.9! with the parameters of Table II
The potential has a maximum at the hexagonal site situated at
Å from the T site, but the fit has been constrained so that it form
simple potential well.
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muon may be bound within the well. Numerical calculatio
show a twofold degenerate first excited state at an energ
0.84 eV. The wave functions of these states are simila
those obtained from a harmonic approximation, i.e., th
consist essentially of an excitation within the plane perp
dicular to the bond. The energy of the first excited state
also reasonably well described within the harmonic appro
mation, which predicts the excited state to be 0.22 eV ab
the ground state. It is also possible that some of the hig
energy states are bound within the well. In germanium,
potential well at the BC site is 1.51 eV deep. The first e
cited state is twofold degenerate with an energy of 0.78
and is of the same character as in silicon.

For the more massive proton the excited states are lo
in energy. At the BC site in silicon, the twofold degenera
first excited state of the proton has an energy of 0.27
which is 0.07 eV higher than the ground state, while in g
manium the excited state has an energy of 0.25 eV, whic
also 0.07 eV above the ground state.

Each excited state of the muon/proton defines a differ
adiabatic potential for the nuclei@i.e., a differentEa

m(rn) in
Eq. ~2.7!#. It is therefore possible for the lattice relaxation
that occur when the muon/proton is in its first excited st
~say! to be different from those for the ground state. F
instance, the fact that the wave function of the first exci
state of the muon/proton is essentially an excitation in
plane perpendicular to the bond, combined with the fact t
the potential well in this plane becomes narrower as the se
ration of the NN atoms increases, results in the NN ato
actually relaxing towards the impurity. This relaxation
small for the muon, but effectively zero for the proton due
the smaller zero-point energy. The effect on the energie
the excited states is negligible.

At the T site in silicon the potential well is only 0.20 eV
deep. For the muon this means that even the ground-s
energy~0.28 eV! of our constrained potential well~which is
an upper bound on the true ground state energy! is greater
than the well depth. The proton, however, has a~triply de-
generate! first excited state with an energy of 0.14 eV, whic
may therefore be bound at the T site. In germanium the
tential well at the T site is just 0.18 eV deep in our 16-ato
supercell calculations. It follows from the behavior found
going from the 16-atom to the 54-atom supercell in silic
that the true well depth in germanium will probably be le
than this. It is therefore unlikely that excited states of eith
the muon or the proton will be bound at the T site in germ
nium.

E. Energy barriers at the T and BC sites

The heights of the energy barriers confining the muon a
proton at the BC and T sites are clearly of great importa
in determining the dynamics of the impurities within the la
tice and hence are a significant part of the configurati
coordinate diagram.

The static barriers~i.e., excluding zero-point effects! ex-
perienced by the muon and proton are identical. For the
site in silicon we calculate the static barrier to motion t
wards the hexagonal site~in the @21 1 0# direction! to be
1.37 eV while in germanium it is 1.51 eV. The effectiv
barrier height is reduced by the zero-point energy and th

e
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fore depends on the nature of the impurity. Including t
effect, the effective barrier experienced by a muon at the
site in silicon is 0.74 eV while in germanium it is 0.95 eV
For the proton, the effective barriers~1.17 eV in silicon and
1.33 eV in germanium! are higher. The effective barrie
height for the muon at the BC site may be considere
measure of the barrier to the BC→T site transition. In reality
this transition is believed to involve charged states: muon
at the BC site is first ionized@with activation energy 0.22 eV
~Ref. 30!# and then moves to the T site while simultaneou
recapturing an electron to regain its neutral charge state.
sum of the activation and barrier energies for these two p
cesses as measured experimentally in silicon is 0.60 eV4

At the T site the energy barriers are very much lower.
silicon the static barrier to motion of the muon towards t
hexagonal site~in the @1 1 1# direction! is calculated to be
0.20 eV while in germanium it is 0.18 eV. When zero-po
effects are taken into account, the effective barriers for
muon at the T site in silicon and germanium are zero in
cating that, even atT50 K, the muon is free to diffuse
through the interstitial region. However, this barrier is n
appropriate for the T→BC transition because in our calcula
tions for the muon in the interstitial region, the host ato
around the BC site are unrelaxed. The nature of the re
ation of these atoms that allows the muon to move to the
site is unclear. Experimentally, the barrier for the T→BC site
transition in silicon is 0.39 eV.4

Since the zero-point energy of the proton is around a th
of that of the muon, these calculations indicate that it will
bound at the T site in both silicon and germanium with
effective barrier of around 0.12 eV in each case. As pre
ously discussed, the true effective barrier in germanium w
probably be lower than this.

F. Hyperfine and superhyperfine parameters

The hyperfine parameters depend on the spin densit
the region at and around the atomic nuclei. More spec
insight into the origin of the large measured differences
tween hyperfine parameters for muons located at the
impurity sites can be gained from a consideration of the s
density isosurfaces. Figure 7 shows spin density con
plots for silicon in appropriate planes encompassing the
and T sites. Evidently the majority spin density around
impurity placed at the BC site is largely dispersed onto
two nearest-neighbor silicon atoms; the spin density in
small region around the hydrogen nucleus is comparativ
small and of opposite sign. At the T site, by contrast, alm
all the majority spin density is localized on the defect. Fro
these calculations one therefore expects the isotropic hy
fine parameter at the two sites to be of opposite sign, with
magnitude of the parameter at the BC site much smaller t
at the T site.

It is of course necessary to check the dependence of
culated hyperfine and superhyperfine parameters on the
percell size and basis set quality. A set of results are sh
in Table III. The parameters appear to be reasonably w
converged with respect to the basis-set, but the converg
with increasing supercell size is less good, particularly
the isotropic hyperfine and superhyperfine parameters a
BC site. The sensitivity of the isotropic parameters is due
s
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the fact that they depend upon the value of the spin densit
a single point in space@Eq. ~2.14!# whereas the anisotropi
parameters are given by integrals over the spin density@Eq.
~2.15!#. Although the percentage errors in the isotropic p
rameters at the BC site are large, the absolute errors are
large. Table IV gives the hyperfine and superhyperfine
rameters calculated at the BC site in both silicon and ger
nium together with the results of other calculations for co
parison. Without motion averaging, the values obtained
silicon using the LSDA approximation are in reasonab
agreement with both experiment and other DFT calculatio

Both the hyperfine and superhyperfine motion-avera
tensors (̂Apm

BC& and^ApSi

BC&) were found to be axially symmet

ric about the Si-Si bond~@1 1 1# direction! in agreement with
the experimental results. As Luchsingeret al.7 found, motion
averaging increases the values of all but one~the anisotropic
hyperfine parameter! of the hyperfine and superhyperfine p
rameters, with the isotropic~contact! term on the muon being
the most sensitive. This is because of the very small con
charge density which varies quite significantly with th
muon position~Fig. 8!. In agreement with Luchsingeret al.,8

use of the Perdew-Wang17 GGA functional did not consis-
tently improve the parameter values. The results obtained
the muon at the BC site in germanium follow a similar pa
tern.

The calculated hyperfine parameters for the T site
given in Table V. For silicon our values are in good agre

FIG. 7. Spin density contour map in the neighborhood of~a! the
BC site and~b! the T site in silicon. In~a! the muon position is
located dead center, with the two nearest-neighbor silicon at
above and below. In~b! the large concentration of positive spi
density is located on the muon position, the positions of nea
silicon atoms in this plane are indicated with crosses. Continuo
dashed and dot-dashed lines correspond to positive, negative
zero values respectively. The separation between adjacent iso
sity contours is 0.001 e/bohr3.

TABLE III. The dependence of hyperfine and superhyperfi
parameters for muonium in silicon on supercell size and basis

BC site T site
Supercell Basis set Asm

Apm
AsSi

ApSi
Asm

16 atom Standard 227.1 17.7 2147 213.6 2302
16 atom Large 221.4 13.0 2114 210.7 2366
54 atom Standard 21.6 16.4 291.0 212.4 2362
54 atom Large 4.5 9.8 257.1 28.1 2389
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TABLE IV. Static and motion-averaged~indicated by^ &) hyperfine parameters for the muon at the B
site and the nearest-neighbor atoms. PS denotes a pseudopotential calculation.

Hyperfine parameters~MHz!

Silicon Germanium
Asm

Apm
AsSi

ApSi
Asm

Apm
AsGe

ApGe

LSDAa 21.6 16.4 291.0 212.4
LSDAb 227.1 17.7 2147 213.6 224.6 16.4 280.7 25.8
^LSDA&b 2.5 14.5 2141 213.4 3.6 12.5 275.5 25.6
GGAb 289.3 18.9 2155 214.0 264.6 17.1 281.0 25.9
LSDAc 2104 58.5 2127 253.5 287 64 285 224
PS-LSDAd 226 22.8 290 220.2
PS-GGAd 281 27.5 2192 228
^PS-GGA&d 265 21.7 2191 226.2
PS-LSDAe 226.8 18.1 283.8 222.7
PS-LSDAf 235 22.3 285 221.5
Experimentg 267.3 25.3 295.1 221.2
Experimenth 296.5 34.6

aThis work, 54-atom supercell and ‘‘standard’’ basis set.
bThis work, 16-atom supercell and ‘‘standard’’ basis set.
cCasarinet al. ~Ref. 28!.
dLuchsingeret al. ~Ref. 8!.
eVan de Walle~Ref. 6!.
fVan de Walle and Blo¨chl ~Ref. 7!.
gKiefl and Estle~Ref. 27!.
hPatterson~Ref. 1!.
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T
an-
ment with both experiment and previous calculations. Ag
use of the Perdew-Wang17 GGA functional fails to improve
this agreement. For germanium, our value of the isotro
hyperfine parameter at the T site also agrees quite well w
the measured value.

The behavior of the isotropic hyperfine parameter alo
the @1 1 1# axis in the vicinity of the T site in silicon and
germanium is shown in Fig. 9. Motion averaging for t
muon/proton at the T site reduces the isotropic hyper
parameter in both silicon and germanium. The final motio
averaged results are in reasonable agreement with ex
ment. Motion averaging ofApm

T resulted in an isotropic ten

FIG. 8. Variation of the isotropic hyperfine parameter and
xy component ofAp with displacement of the muon/proton from
the BC site. The calculations were performed in silicon with t
16-atom supercell and the standard basis set. The lines are guid
the eye.
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sor, in agreement with the symmetry arguments presente
Sect. II D and experimental observations.

In a recent application of the path-integral Monte Ca
approach, Miyakeet al.12 studied hydrogen and muonium a
the T site in silicon, with the electron-electron interactio
calculated within the LDA. They found the T site to be
local maximum in the potential energy surface, in agreem
with Luchsingeret al.8 but in disagreement with our result
and a recent plane-wave pseudopotential calculation.30 Their
path-integral Monte Carlo study showed that quantum effe

e

s to

TABLE V. Isotropic hyperfine parameters for the muon at the
site of silicon and germanium. The quoted results are for the ‘‘st
dard’’ basis set.

Asm
~MHz!

Silicon Germanium

LSDAa 2302 2236
GGAa 2651 2548
^LSDA&a 2096 2032
LSDAb 2362
^LSDA&b 2152
PS-LSDAc 1939
PS-GGAc 2098
LSD-VBHd 3043 3977
Experimente 2006 2360

aThis work, 16-atom supercell.
bThis work, 54-atom supercell.
cLuchsingeret al. ~Ref. 8!.
dCasarinet al. ~Ref. 28!, extended basis set.
ePatterson~Ref. 1! and references therein.
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led to a muonium distribution centered on the T site wh
hydrogen behaved as a largely classical particle and was
distributed away from the local maximum on that si
Evaluating the motion-averaged isotropic hyperfine para
eter with our hyperfine data gives a value of 492 MHz for t
hydrogen distribution of Miyakeet al., but 685 MHz with
our hydrogen distribution. Therefore, if one could meas
the isotropic hyperfine signal ofhydrogenat the T site, one
could deduce whether the T site is a maximum or minim
in the potential energy surface.

G. Energies of a muon/proton at the T and BC sites

The question of the relative stabilities of the muon a
proton at the BC and T sites is of considerable interest. F
particular impurity this energy difference is the sum of co
tributions from the static-lattice energy and the zero-po
energy. The contribution from the static lattice is sensitive
the size of the supercell and to the quality of the basis
We investigated this point using the 16- and 54-atom sup
cells. We have added a BSSE correction to each of the st
lattice energy differences quoted here. Using the LSDA,
16-atom silicon cell and the standard basis set, the T site
found to be 0.68 eV lower in energy than the BC site. Us
the large basis set reduced this to 0.33 eV. In the 54-a
supercell and using the standard basis set the T site was
eV lower in energy than the BC site. With the large basis
this was reduced to just 0.07 eV. These results indicate th
16-atom supercell is too small to give reliable estimates
the static-lattice energy difference between the two sites
summary of the computed energies that influence the rela
stabilities is given in Table VI. Within the GGA the energ
differences are similar, with the BC2T energy difference
being slightly smaller.

There have been several previous calculations of
static-lattice energy difference between the T and BC site
silicon. Using a plane-wave pseudopotential method and
LSDA, Chang and Chadi9 found the T site to be lower in
energy, but only by an amount<0.25 eV. Luchsingeret al.,8

also using a plane-wave pseudopotential method, found t
site to be 0.15 eV higher in energy than the BC site with
the LSDA and 0.19 eV higher within the GGA. Note, how
ever, that Luchsingeret al.7 found the T site to be a loca
maximum in the energy and that a nearby site has an en
about 0.05 eV lower. It is clear from the various results t
the static-lattice energy difference between the T and
sites in silicon is small within the LSDA/GGA, but its pre
cise value has yet to be settled.

The fact that the static-lattice energy difference is sm
means that the zero-point energy of the impurity is crucia
determining the relative stability of the T and BC sites. Fo
muon in silicon we have found the zero-point energy at
BC site to be 0.35 eV larger than at the T site. This diff
ence is large enough to to make the BC site unfavorable
the muon, irrespective of which of the above values for
static-lattice energy difference is used. However, the ze
point energy of the proton at the BC site in silicon is on
0.12 eV higher than at the T site. Therefore, for this impur
the relative stability of the two sites depends on the prec
value of the static-lattice energy difference.

In germanium with a 16-atom supercell, the difference
static lattice energies favors the T site by 0.57 eV. The c
us
.
-

e

a
-
t
o
t.
r-
ic-
e
as
g
m
.41
t,
t a
f
A
ve

e
in
e

T

gy
t
C

ll
n
a
e
-
or
e
-

e

-

vergence with respect to supercell size found in silicon s
gests that in a fully converged LSDA calculation this diffe
ence would be smaller. We estimate that the zero-po
energy of a muon at the BC site is 0.34 eV larger than at
T site. For a proton the corresponding value is 0.12 e
These results are similar to those obtained in silicon and t
it is likely that for the muon the T site is lower in energ
Without a fully converged value for the static lattice ener
difference we are unable to draw any conclusions on
lowest energy site of the proton.

IV. CONCLUSIONS

We have calculated the zero-point motions and hyper
parameters of both muonium and hydrogen when presen
impurities in silicon and germanium crystals at the BC and
sites. The electron, muon/proton and ion motions were
coupled using a double adiabatic approximation, and for
BC site we have included the effect of the zero-point mot
on the relaxation of the host lattice. The ground states
both the muon and proton at the BC sites of silicon a
germanium are strongly confined within a potential well
depth 1.37 eV~silicon! and 1.51 eV~germanium!. The cal-
culated zero-point energy of a muon at the BC site is 0.63
for silicon and 0.56 eV for germanium. Despite the relative
large zero-point energy of the muon at the BC site, it cau
only a small additional outwards relaxation of the neare
neighbor silicon/germanium atoms of about 0.01 Å . For
proton the additional relaxations of the nearest neighbors
to zero-point motion are negligible. At the T site the sta
relaxations of the host atoms are very small and the ze
point energy of 0.28 eV~0.22 eV! for a muon in silicon
~germanium! is considerably smaller than at the BC site. It
therefore reasonable to assume that the additional relaxa
due to the zero-point motion is negligible for either a mu
or proton at the T site.

The relaxation of the crystal around either the BC or
sites is practically independent of whether the impurity is
muon or a proton. This result confirms one of the underly
assumptions of the widely accepted configuration coordin
model.3,4 The potential well at the BC sites of both silico

FIG. 9. The variation in the isotropic hyperfine parameter alo
the @1 1 1# direction at the T site in silicon~54-atom supercell! and
germanium~16-atom supercell!. A positive displacement indicate
movement towards the hexagonal site. The lines are guides to
eye.
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TABLE VI. A summary of the energies influencing the relative stability of the BC and T sites in sil
and germanium. The importance of the zero-point energy of the muon in determining the favored site i

Silicon Germanium
BC site T site BC site T site

Static lattice energy w.r.t. BC site~eV! 0 20.07a 0 20.57b

Muon zero-point energy~eV! 0.63c 0.28d 0.56b 0.22b

Total energy w.r.t. BC site for muon~eV! 0 20.42 0 20.91
Proton zero-point energy~eV! 0.20c 0.09d 0.18b 0.06b

Total energy w.r.t. BC site for proton~eV! 0 20.18 0 20.69

a54-atom supercell and ‘‘large’’ basis set.
b16-atom supercell.
c16-atom supercell and ‘‘standard’’ basis set.
d54-atom supercell and ‘‘standard’’ basis set.
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and germanium is reasonably well described by a harmo
approximation, at least for the ground states of the muon
proton. The potential well at the BC site in both materials
deep enough to bind several excited states of the muon
proton. The potential wells at the T sites in both silicon a
germanium are not deep enough to bind the muon whic
free to diffuse through the interstitial region, although o
calculations suggest that the proton is bound at this sit
T50 K.

Various LSDA and GGA calculations have indicated th
the energies for a static muon or proton at the BC and T s
in silicon are very similar. However, we have calculated
difference in zero-point energies of a muon at the T and
sites in silicon~germanium! to be 0.35 eV~0.34 eV!, which
is sufficient to make the T site more stable, whether we
sume our value for the static-lattice energy difference
tween the BC and T sites or those of others.9,8 This result is
in conflict with the interpretation of experimental data.

The hyperfine parameters calculated for silicon in our
electron calculations are close to those obtained in pla
wave pseudopotential calculations. This agreement confi
that the procedure used to correct for the pseudopotential
for the incomplete plane-wave basis sets are accurate.
silicon our static LSDA results are in reasonable agreem
with other LSDA results and experiment. Our hyperfine p
rameter for the muon at the T site in germanium is in mu
.
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better agreement with experiment than the only previous
culation of which we are aware.28

We have evaluated the motion averages of the hyper
and superhyperfine parameters by averaging over the squ
modulus of the wave function obtained from the full solutio
of the muon/proton Schro¨dinger equation in the potentia
well. The symmetry of the potential wells requires that t
symmetry of the motion-averaged hyperfine tensors at th
and BC sites are the same as if the muon/proton was situ
exactly at the sites. We have obtained detailed informat
about the variation of the hyperfine and superhyperfine
rameters with the position of the muon/proton. Our resu
show that motion averaging for the muon/proton at the
site in silicon and germanium increases the values of al
the hyperfine and superhyperfine parameters apart from
anisotropic hyperfine term which decreases slightly,
agreement with the conclusions of Luchsingeret al.8 With
the exception of the isotropic hyperfine term however, all
the changes are small. At the T sites in silicon and germ
nium, motion averaging reduces the isotropic hyperfine
rameter.
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