
PHYSICAL REVIEW B 15 JULY 2000-IIVOLUME 62, NUMBER 4
Minimum principles and level splitting in quantum Monte Carlo excitation energies:
Application to diamond

M. D. Towler, Randolph Q. Hood,* and R. J. Needs
Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE, United Kingdom

~Received 6 December 1999!

A diffusion and variational quantum Monte Carlo~DMC and VMC! study of excitation energies in diamond
is reported. Good agreement is found between the DMC results and results from theGW approximation and,
where available, with experiment. A group theoretical analysis is provided of the level splittings arising from
the use of arbitrary degenerate single-particle orbitals in the construction of ground- and excited-state deter-
minants. The results are discussed in light of the recently demonstrated variational theorems for excited states
in the DMC study.
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I. INTRODUCTION

Quantum Monte Carlo~QMC! methods offer a direct and
accurate wave-function-based treatment of quantum ma
body effects, and may be used to compute the energy of
ground and excited states of molecules and solids. They
particularly attractive for applications to large systems
cause the computational cost scales as the cube of the sy
size, which is highly favorable when compared with oth
correlated wave-function methods.

A number of QMC techniques have been used for cal
lating excited state energies. The methods we discuss
are perhaps the most conceptually simple as they involve
construction of a trial wave function to model each excit
state. Using such a trial wave function in a variational Mon
Carlo1 ~VMC! or fixed-node diffusion Monte Carlo2 ~DMC!
calculation then yields an approximation to the energy of
excited state. This type of method was first used for sm
molecules3 and more recently has been used for excitat
energies in solids.4–6

The trial wave function is central to VMC and DMC
methods, as it controls both the statistical variance and
final accuracy obtained. Typically it is taken to be a det
minant of single-particle orbitals derived from Hartree-Fo
~HF! or Kohn-Sham density functional theory~KS DFT! cal-
culations multiplied by a Jastrow factor that explicitly corr
lates pairs of particles. Trial wave functions for excited sta
are formed by modifying the determinantal part of t
ground-state trial function. In the calculations reported h
we form a trial wave function for an excited state by repla
ing an occupied orbital in the ground state determinant b
virtual orbital. This corresponds to the physical situation
an optical absorption experiment where an electron is exc
from the valence band into the conduction band. Two qu
particles are introduced into the system, the electron
hole, which interact and form an exciton.

In this paper we use the VMC and DMC methods to stu
excited states in diamond. We analyze the symmetry of
many-body trial wave functions for the excited states, wh
is useful in discussing the splitting of the energy levels d
to interaction effects and the application of variational the
rems to the calculated energies.
PRB 620163-1829/2000/62~4!/2330~8!/$15.00
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II. VARIATIONAL PRINCIPLES FOR EXCITED STATES

For a trial wave function of a definite symmetry the e
ergy calculated within the VMC method is greater than
equal to that of the lowest energy state of that symmetry. T
variational principle can be extended to higher excited sta
by diagonalizing the Hamiltonian in a basis of states linea
independent to exact states of the same symmetry with e
gies lower than the desired state, which we refer to as
generalized variational theorem.7 In practice one can usually
obtain reasonable approximations to the energies of hig
excited states through the nonvariational procedure of sub
tuting occupied orbitals with the appropriate virtual orbita
in the trial determinant and directly evaluating the VMC e
ergy without orthogonalization to lower energy states.
common procedure is to optimize the Jastrow part of the t
function for the ground state calculation and then to use
same Jastrow factor for the excited states, the trial func
differing only in the orbitals making up the determinan
Practical tests have shown that reoptimization in the exc
state changes the computed energy by less than the u
statistical error bar of a few hundredths of an eV per ato

The nature of variational principles within the DMC
method is significantly different. If a fixed-node constraint
not imposed on the wave function, propagation of the sys
in imaginary time does not maintain the fermionic symme
of the starting state and the solution decays towards
bosonic ground state. This difficulty is a manifestation of t
fermion sign problem. Most DMC calculations therefore u
the fixed-node approximation,8 which for most applications
is both accurate and numerically stable. The basic ide
quite simple. The trial many-electron wave function is us
to define a many-electron nodal surface. The fixed-no
DMC algorithm maintains the nodal surface of the trial wa
function, which enforces the fermionic symmetry and pr
duces the lowest energy many-electron wave function c
sistent with this nodal surface. It is therefore the fixed-no
constraint that allows the estimation of excited state ener
in DMC calculations.

The nature of variational principles within the fixed-nod
DMC method was recently explored by Foulkes, Hood, a
Needs.9 If one models an excited state that is the lowe
energy state of a certain symmetry with a trial wave funct
2330 ©2000 The American Physical Society
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without a definite symmetry, there need not be a variatio
principle for the fixed-node DMC energy. Foulkes, Hoo
and Needs9 showed that even if one chooses a trial wa
function with a definite symmetry, then the resulting fixe
node DMC energy neednot be above the lowest energy sta
with that symmetry. Under some circumstances the fix
node DMC algorithm can break the symmetry of the tr
wave function. It turns out that if the trial wave functio
transforms according to a one-dimensional irreducible rep
sentation of the symmetry group of the Hamiltonian, then
fixed-node DMC energy must lie above the energy of
lowest state of that symmetry, but if the irreducible repres
tation is of dimension greater than one, then the fixed-n
DMC energy can lie below the exact energy.9 Weaker varia-
tional bounds may then be obtained by choosing trial fu
tions transforming according to one-dimensional irreduci
representations of subgroups of the full symmetry group

Despite this situation, fixed-node DMC seems to wo
well as a practical tool for computing excitation energie
even for the higher states of a given symmetry. The rea
for this is that the energy of the excited state would be ex
if the nodal surface of the trial wave function were exact,
the accuracy of the nodal surface is the key issue. If
nodal surface of the trial function is inexact, then the DM
wave function may not have the same symmetry as the
function, but the imposed nodal surface acts as such a st
constraint on the DMC wave function that it effectively pr
vents significant deviations in the energy.

III. LEVEL SPLITTING

The difference between the symmetry group of the Ham
tonian from which the single-particle orbitals are obtain
and that of the full interacting Hamiltonian with explic
electron-electron interactions means that a reevaluation
the degeneracy classifications is required. In particular, if
single-particle problem involves the partial filling of loca
ized degenerate energy levels, then one can build a num
of different Slater determinants from the degenerate orbit
If the matrix elements of the interacting Hamiltonian b
tween these Slater determinants are nonzero, then the de
eracy of the states of the single-particle problem will
lifted and we will obtain a multiplet structure. In a situatio
where the wave function is localized in some sense~e.g., in
atoms or isolated point defects! this may be an importan
effect. In QMC calculations for solids spurious level splittin
can occur due to the finite size of the simulation cell. Diffe
ent choices of single-particle orbitals to describe the w
function of the excited electron and the hole lead to differ
values of the exciton binding energy. This splitting wou
disappear in the limit of a large simulation cell but up un
now it has not been considered in QMC calculations.

Consider, for example, the direct promotion of an elect
across the band gap at theG point in diamond~i.e., aG258v
→G15c optical absorption!. In a one-electron ground-stat
calculation theG258v level at the top of the valence band an
the conduction bandG15c level are triply degenerate. A QMC
calculation of the energy of this excited state is carried
by replacing one of the valence band orbitals with a cond
tion band orbital of the same spin in the determinantal par
the trial wave function. This may evidently be done in ni
al
,
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different ways. Since these nine excited state determin
may consist of different linear combinations of basis fun
tions that transform as different representations of the s
metry group of the many-electron Hamiltonian, there is
reason why they should form a degenerate set, and in gen
they do not. In fact, no ninefold degenerate irreducible r
resentation exists at theG point for any of the 230 space
groups.

The precise linear combinations of degenerate sing
particle orbitals obtained from our HF or DFT electron
structure code are subject to the whim of the diagonalizer
the next section the procedure for decomposing this red
ible basis into its component irreducible representations~and
hence finding the correct linear combinations of determina
that transform according to these irreducible representatio!
will be demonstrated. It will also be shown that in princip
such symmetrized wave functions give the maximum p
sible level splitting.

IV. GROUP THEORETICAL ANALYSIS

A. Basic ideas

First we consider the relationship between the interact
HamiltonianĤ used in QMC and the noninteracting Ham
tonian from which the single-particle orbitals are obtained.
the QMC calculation, the infinite crystal is represented b
finite simulation cell subject to periodic boundary condition
The primitive translation vectors of this supercell are tak
to be integer multiples of the primitive translation vectors
the underlying crystal lattice. With these boundary con
tions the interacting Hamiltonian can be written as

~1!

where$ts% is the set of translation vectors of the simulatio
cell lattice and the$r i% denote the positions of theN elec-
trons in the cell. The potentialv(r ) has the periodicity of the
set$tp% of primitive translation vectors of the crystal lattice

Now define a single-particle HamiltonianĤ0
i consisting of

the kinetic energy and external potential operators fo
single electron in the many-body system. BothĤ0

i and the
HF or KS DFT Hamiltonian giving the single-particle orbi
als are invariant under the same set of symmetry operati
namely the set of one-electron coordinate transformati

$T%5$Rnutn1tp% of the crystalline space groupG@Ĥ0
i #. Next

consider the noninteracting many-particle HamiltonianĤ0

5( i Ĥ0
i . This is invariant under a groupG@Ĥ0# of operations

that are tensor products ofN elements ofG@Ĥ0
i #. For ex-

ample, if Ĥ0 contains three electrons with labelsi , j ,k and
each has associated with it a set of coordinate transforma
such as$Ti%, then the groupG@Ĥ0# consists of all possible
productsTiTjTk .

The reduction in symmetry due to the interelectron Co
lomb termV̂ee means that the interacting HamiltonianĤ in
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Eq. ~1! is invariant only when the same operation is appl
to all electrons simultaneously. In the above example,
group of tensor product operations formingG@Ĥ# would thus
be restricted to those withTi5Tj5Tk . Evidently Ĥ is also
invariant under translations of any one electron by a sup
cell lattice vectorts. Such operations are not relevant in a
discussion of degeneracy classification, however, and
not be considered to be part of the groupG@Ĥ# in what
follows. If defined in this way, the groupG@Ĥ# is a proper
subgroup ofG@Ĥ0# and is isomorphic toG@Ĥ0

i #.
The trial many-electron wave functions used in our QM

calculations are of the Slater-Jastrow type,

FT„r1 , . . . ,rN…5D↑
„r1 , . . . ,rN↑…D↓~rN↑11 , . . . ,rN!

3expS (
i 51

N

x~r i !2(
i , j

N

u~r i j !D , ~2!

whereD↑ andD↓ are up-spin and down-spin determinants
single-particle orbitals and there areN5N↑1N↓ electrons.
The determinants are multiplied by a Jastrow factor that c
tains a one-bodyx function invariant under all coordinat
transformations of the groupG@Ĥ0

i # and a spherically sym
metric two-body correlation factoru.

The product of the up-spin and down-spin determina
~call it D) of the Slater-Jastrow function transforms as
basis function of some irreducible~barring accidental degen
eracies! representationGG[ Ĥ0] of the noninteracting many
particle Hamiltonian, since it is an eigenstate of the full H
or KS DFT local-density approximation~LDA ! Hamiltonian
which has the same symmetry group. This representa
may be decomposed in terms of the irreducible represe
tions of the subgroupG@Ĥ#:

GG[ Ĥ0]5GG[ Ĥ]
1

% GG[ Ĥ]
2

% •••% GG[ Ĥ]
M . ~3!

The determinant may then be written as a linear combina
of determinants with these definite symmetries:

D5(
mn

an
mDn

m , ~4!

where Dn
m transforms as thenth row of the representation

GG[ Ĥ]
m .
Since the Jastrow factor exp@J# is invariant under all op-

erations inG@Ĥ# the functionsDn
m exp@J# are basis functions

of the irreducible representations of this group. The unsy
metrized functionDexp@J# is in general a basis function of
reducible representation ofG@Ĥ#, while D itself is a basis
function of an irreducible representation ofG@Ĥ0#. Since
G@Ĥ# is isomorphic toG@Ĥ0

i #, each representation and bas

function ofG@Ĥ# can be labeled in terms of a representat
and basis function ofG@Ĥ0

i #. Thus one can use the labels th
denote the transformation properties of the single-particle
bitals to denote how each many-electron Slater-Jastrow w
functionDn

m exp@J# transforms under the operations ofG@Ĥ#.
We now discuss the nature of these labels.
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The orbitals in the determinant are Bloch functions, ea
with an associated wave vectork. In the preliminary HF KS
DFT calculation the orbitals are calculated on a Monkhor
Pack grid in reciprocal space defined by

k5ks1(
i 51

3 S l i

ni
DK i ~0< l i<ni21!, ~5!

where theK i are the fundamental vectors of the reciproc
lattice andl i and ni are integers. The total number of sam
pling points isN5n13n23n3. The fractional displacemen
ks is often taken to be zero~this will be our choice in the
following! though different choices can lead to more ef
cient sampling nets and reduction of finite size effects
QMC.10 In general, a determinant of single-particle orbita
whosek vectors lie on such a mesh forms a many-parti
wave function for ann13n23n3 simulation cell with an
associated simulation cell wave vector,ks , equal to the off-
set of the mesh from the origin.10

In the general single-particle case we denote
f t j

kp(r ) @ t51,2, . . . ,M (k), and j 51,2, . . . ,dp] the set of
basis functions of the unitary irreducible representationGkp

of the space groupG, whereM (k) is the number of vectors
in the star ofk generated fromk by rotationsRt , anddp is
either the dimension of thepth unitary irreducible represen
tation of the point group ofk,G0(k) ~whenG@Ĥ0

i # is a sym-
morphic group! or the dimension of thepth relevant irreduc-
ible representation of the group of the allowed wave vec
k, G(k) ~whenG@Ĥ0

i # is nonsymmorphic!. Then ~a! f t j
kp(r )

is a Bloch function with wave vectorRtk, and~b! the func-
tions f1 j

kp(r ) ( j 51,2, . . . ,dp) form a basis for the unitary

irreducible representation ofG0(k) when G@Ĥ0
i # is a sym-

morphic group or a basis for the relevant irreducible rep
sentation ofG(k) whenG@Ĥ0

i # is a nonsymmorphic group.
Since the group of the full many-electron Hamiltonia

G@Ĥ# is isomorphic toG@Ĥ0
i #, each eigenstate ofĤ and each

of the many-electron states previously labeledCn
m

5Dn
mexp@J# can thus be labeled in terms of the singl

particle labelsC t j
kp(r1 ,r2 , . . . ,rN) using the standard nota

tion in which the representationkp corresponds tom and the
row t j corresponds ton.

B. Symmetry properties of excited determinants

For any symmetry operationT of the groupG@Ĥ#, the
action of the corresponding scalar transformation opera
P(T) on a determinantDm is given by

P~T!Dm5 (
n51

d

Gnm~T!Dn , ~6!

where, for the example of theG258v→G15c transition in dia-
mond considered earlier, the dimensiond is nine and the
representationGnm is reducible. Since theDn form an ortho-
normal set, the matrix whose elements are

Gnm~T!5E Dn* P~T!Dm dt ~7!

is unitary.
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TABLE I. Decompositions into irreducible representations of possible excitations in diamond.

Excitation

G1v→G28c5G28
G1v→G15c5G15

G1v→L1c5L1

G1v→X1c5X1

G258v→L3c5L1% L2% 2L3

G258v→G15c5G28% G128% G15% G25

G258v→L1c5L1% L3

G258v→X1c5X1% X3% X4

X1v→G15c5X1% X3% X4

X1v→X1c5X1% X2% X3% X4% G1% G12% G258% G28% G128% G15

X4v→G15c5X1% X2% X3

X4v→G28c5X3

X4v→L1c5L2% L3% L28% L38
X4v→X1c5X1% X2% X3% X4% G158% G258% G15% G25

L28v→L3c5X1% X2% X3% X4% G12% G158% G258
L28v→G15c5L1% L3

L1v→L3c5X1% X2% X3% X4% G128% G15% G25

L1v→G15c5L28% L38
L1v→L1c5X1% X3% G1% G258
L38v→G28c5L3

L38v→L3c52X1% 2X2% 2X3% 2X4% G18% G28% G128% 2G15% 2G25

L38v→G15c5L1% L2% 2L3

L38v→L1c5X1% X2% X3% X4% G128% G15% G25

L38v→X1c5L1% L2% 2L3% L18% L28% 2L38
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Transformation of an excited state functionC
5Dm exp@J# gives

P~T!Dmexp@J#5 (
n51

d

Gnm~T!Dnexp@J#, ~8!

where in generalGnm(T) is reducible. To decompose th
reducible representation of the arbitrarily excited deter
nant into its constituent irreducible representations as in
~3!, we first require an expression giving the character s
tem of the reducible representation. This may be obtained
evaluating the trace of theG(T) matrices for each class o
symmetry operator as follows.

Consider the Slater matrix for each spin compone
where each row corresponds to a different single-particle
bital and each column to a different electron position. App
cation of a scalar transformation operatorP(T) transforms
each single-particle orbital in the matrix into a linear com
nation of the orbitals in its degenerate set with coefficie
G t j

kp(T). Using the definition of the determinant one can e
pand the transformed determinant into a sum of determin
of orbitals. Noting that all of these determinants vanish
cept those containing a different orbital in each row, one
show that the ground state in diamond withks50 transforms
as follows, where each determinantD↑ and D↓ in Eq. ~2!
consists of the same closed shell of orbitals:

P~T!D↑,↓5 )
kp

occupied

det@Gkp~T!#D↑,↓. ~9!
i-
q.
s-
y

t,
r-
-

-
s
-
ts
-
n

Since the determinant, det@Gkp(T)#, of each matrix represen
tation is a real number for a 23232 simulation cell in dia-
mond the ground-state Slater-Jastrow functionCG
5D↑D↓exp@J# is invariant under all operations of the grou
and thus belongs to the identity representationGk50,p51.

To construct an excited-state wave function one of
ground-state valance orbitals is replaced in, say,D↑ with a
conduction orbital. One can show in this case that the ch
acter of the reducible representation in Eq.~7! for diamond is

x~T!5xhole* ~T!xelectron~T!. ~10!

The ‘‘hole’’ subscript refers to the characters of the irredu
ible representation of the single-particle valence orbital (G258
for the simple example! that is excited to a virtual orbita
~e.g. G15) with its corresponding characters denoted by
‘‘electron’’ subscript. There are well-established procedu
for finding the characters of the irreducible representation
the nonsymmorphic space group of the diamond struc
~detailed for example, on pp. 242–245 of Ref. 12!. Having
thus derived the character system of the reducible repre
tation, it may be decomposed into its irreducible compone
following the usual prescription. For the case at hand,
decomposition isG28% G128% G15% G25 where the standard
notation11 for the irreducible representations has been u
~see, e.g., Table D.2 Ref. 12!. Table I lists all such decom
positions of the representations for each of the excitation
diamond considered in this paper, derived from a straight
ward but tedious computation of each term in Eq.~10!.
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To determine the correct linear combinations of deter
nants that give wave functionsC t j

kp(r1 ,r2 , . . . ,rN) of a defi-
nite symmetry we apply the projector

S dp

g D (
TPG

xp~T!* P~T! ~11!

to each of the possible determinant states. In performing
operation in diamond we need only consider the smaller
terminant composed of orbitals from the partially occup
valence state from which the electron was removed and
partially occupied conduction state into which the electr
was added. For example, for theG258v→G15c calculation
each of the states is threefold degenerate so one nee
apply a projector~for each of the four different symmetries!
to a 333 determinant, composed of two valence orbitals a
a conduction orbital.

C. Level splitting

For determinantsDm that transform among themselves
in Eq. ~6! the expectation value

^Dmexp@J#uĤ0uDmexp@J#&5E0 ~12!

is independent of the hole and particle orbitals used to fo
these excited determinants. When the interacting Ham
tonian of Eq.~1! replacesĤ0 in these expressions a splittin
arises from the interelectron Coulomb term; its magnitude
determined by

K Dmexp@J#U(
i . j

1

ur i2r j u
UDmexp@J#L .

The use of arbitrary mixed symmetry orbitals in the tr
function will thus produce an essentially random shift aw
from the true energy. Here we show that the maximum s
is produced using the symmetrized trial functions that tra
form according to the appropriate irreducible representatio

Any arbitrary normalizable function can be decompos
into a linear combination of basis functions of the irreducib
representations of the groupG@Ĥ# of the Schro¨dinger equa-
tion. We therefore write the many-body wave functionC as

C5(
p

(
m51

dp

am
p Cm

p , ~13!

whereCm
p is some function transforming as themth row of

the unitary irreducible representationGp. Let Cm
p andCn

q be,
respectively, basis functions for the unitary irreducible re
resentationsGp andGq of the space group. The expectatio
value of the Hamiltonian is then

E5(
p

(
m51

dp

(
q

(
n51

dq

am
p* an

q^Cm
p uĤuCn

q&. ~14!

AssumingGp andGq are inequivalent ifpÞq, but are iden-
tical if p5q), the Wigner-Eckart theorem may be used
show that

^Cm
p uĤuCn

q&5Epdpqdmn . ~15!

Hence
i-

is
e-

e
n

to

d

il-

is

l
y
ft
-
s.
d

-

E5(
p

Ep (
m51

dp

uam
p u25(

p
uApu2Ep , ~16!

where(puApu25(p(m51
dpuam

p u251. Thus for any arbitrary
normalizable function its expectation value is bounded b

min
p

Ep<E<max
p

Ep , ~17!

where the energy can equal one of the bounds typically w
the wave function transforms as a basis function of an ir
ducible representation.

It is not clear a priori whether the splitting is large
enough to warrant the extra computational effort that is e
dently required to take account of it~say, by computing ex-
citations involving all nine determinants and performin
some sort of average!. One could justify neglecting such
measures if one knew the maximum possible splitting w
sufficiently small relative to the attainable error bars on
excitation energies.

This is the end of the story for the VMC case. The DM
case is somewhat more complicated, since the use of
fixed-node approximation may further split each state if
trial wave function has a definite symmetr
C t j

kp(r1 ,r2 , . . . ,rN), and transforms according to an irredu
ible representation of dimension greater than one, such
whenk5X andp51. The nodal surface of the trial functio
will evidently depend onj ~the row of the irreducible repre
sentation!, and hence so may the DMC energy, as the DM
algorithm may break the symmetry of the trial wave functi
in this case. This effect is obviously absent ifkp corresponds
to a one-dimensional representation such asGk50,p51.

D. Variational principles

For the VMC case, using a wave function with a defin
symmetryC t j

kp(r1 ,r2 , . . . ,rN) the VMC energy is an uppe
bound to the lowest exact energy with that same symme
Consider, for example, the decomposition

G258v→X1c5X1% X3% X4 . ~18!

Forming a VMC state with symmetryX3 ~say! will give a
VMC energy that is an upper bound to the lowest exact
ergy state of symmetryX3.

In diamond with a 23232 simulation cell a variationa
principle applicable to the DMC method will apply to~1! the
ground state,~2! the lowest energy state of each trial wa
function of a definite symmetryC t j

kp(r1 ,r2 , . . . ,rN) when
k50 (G point! andp corresponds to a one-dimensional re
resentation such asG1, and~3! the lowest energy state with
definite k5X or k5L, because of a weaker variation
principle,9 since the group of translations contains only on
dimensional irreducible representations and is a subgrou
G@Ĥ#. So wave functions that transform as~say! X1 ,X2 ,X3,
or X4 with a definitek are all bounded below by the sam
lowest energy of an exact state with a definitek5X. Obvi-
ously the DMC variational principle has far less utility tha
the VMC variational principle.
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TABLE II. Excitation energies of diamond in eV.

Excitation DMCa GWb GWc LDA b Expt d

G1v→G15c 32.18 30.51 30.5 26.93 -
G1v→G28c 41.05 37.42 37.8 34.45 -
G1v→L1c 35.79 33.51 - 29.74 -
G1v→X1c 30.69 29.18 - 25.98 -

G258v→G15c 7.13 7.63 7.5 5.58 7.3
G258v→L1c 10.16 10.23 - 8.76 -
G258v→X1c 5.71 6.30 - 4.63 -
X1v→X1c 20.49 20.10 - 17.24 -
X4v→G15 14.41 14.32 - 11.84 -
X4v→L1c 17.08 17.32 - 14.54 -
X4v→X1c 12.70 12.99 - 10.89 12.5, 12.6
X4v→X4c 26.90 26.19 - 23.17 -
L28v→L1c 27.94 27.58 - 23.90 -
L1v→L1c 25.13 24.9 - 21.72 -

L38v→G15c 10.78 10.61 - 8.36 -
L38v→X4c 22.41 22.48 - 19.69 -
L38v→L1c 13.32 13.61 - 11.17 12.5, 16.3
L38v→L2c8 22.03 21.12 - 18.45 24.0

aThis work. The statistical error bars on the DMC energies are60.2 eV.
bReference 18.
cReference 19.
dExperimental values taken from the compilation given in Ref. 21.
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V. QMC CALCULATIONS

In this section we give some brief practical details of o
diamond QMC calculations. The electron-ion potentialva

was modeled by a norm-conserving Trouiller-Martins LD
pseudopotential. The infinite summation of interparticle Co
lomb interactions in the periodic system can be handled w
the usual Ewald interaction potential but only at the cost
potentially large finite-size errors. An alternative approach
to use our recently introduced ‘‘model periodic Coulom
interaction,’’ which greatly reduces such errors.13 In excita-
tion calculations the choice of interaction potential is le
important since the finite-size error largely cancels when t
ing the difference of excited- and ground-state energies,6 and
for simplicity we have chosen to use the Ewald interaction
this study. We used an fcc simulation cell built from a
3232 array of primitive cells, subject to periodic bounda
conditions and containing 16 carbon pseudoatoms and
electrons.

The Slater determinants were constructed from sing
particle orbitals obtained from an LDA calculation using t
correlation functional of Ceperley and Alder14 as param-
etrized by Perdew and Zunger.15 The LDA orbitals were
computed using the program16 CRYSTAL95 at theG point of
the simulation-cell Brillouin zone using an atom-center
Gaussian basis set. The basis set was made up of fou
contractedsp functions and oned polarization function per
pseudoatom, with exponents optimized in the perfect soli17

Although theG-point scheme does not give optimal Brillou
zone sampling,10 it does preserve the full symmetry of th
system and allows comparison with a wider number of
tablished results. TheG point of the simulation-cell Brillouin
zone unfolds to three inequivalentk points in the primitive
r

-
h
f
s

s
-

n

64

-

n-

-

Brillouin zone. These are~0,0,0! ~the G point!, ~0,0,12 )2p/a

~the X point!, and (12 , 1
2 , 1

2 )2p/a ~the L point!.
The x function used in our Jastrow factor has the fu

symmetry of the diamond structure and is expressed a
Fourier series containing 16 inequivalent parameters.
used spherically symmetric parallel and antiparallel spinu
functions, which satisfy the electron-electron cusp conditio
and contain a total of eighteen parameters. The optimi
parameter values were obtained by minimizing the varia
of the energy.

VI. EXCITED-STATE ENERGY RESULTS

Diffusion Monte Carlo simulations were performed for 1
separate promotion excitations involving orbitals at theG,X,
andL wave vectors in diamond. In these initial calculation
promotions involving sets of degenerate orbitals were m
eled using the unsymmetrized orbitals obtained directly fr
CRYSTAL95. Our calculated excitation energies are shown
Table II together with the results of comparableGW and
LDA calculations.18,19 The GW method is known to give
extremely good results for weakly correlated systems suc
diamond, and the variousGW calculations are seen to be i
excellent agreement with one another. The experimental
are quite sparse, but where available they are in reason
agreement with theGW data. The LDA data show the well
known underestimation of the excitation energies. For
low energy excitations the DMC energies are a little t
small, while for larger excitation energies they are too lar
Nevertheless the agreement between the DMC results
the GW data is very encouraging.

To obtain DMC band energies from the 18 excitation e
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TABLE III. Band energies of diamond in eV.

Band DMCa GWb GWc LDA b HF a Expt.d

G28c 15.83 14.54 14.8 13.10 24.87 15.360.5
G15c 7.23 7.63 7.5 5.58 14.46 7.3
G258v 0.0 0.0 0.0 0.0 0.0 0.0
G1v 225.22 222.88 223.0 221.35 229.19 224.261,22161,

223.060.2e

X4c 19.48 19.5 - 16.91 29.63 -
X1c 5.58 6.3 - 4.63 13.42 -
X4v 27.15 26.69 - 26.26 28.41 -
X1v 214.91 213.8 - 212.61 217.73 -

L28c 18.83 18.14 17.9 15.67 27.61 2061.5
L3c - 10.23 - 8.76 18.51 -
L1c 10.19 10.63 - 8.39 18.32 -
L38v 23.20 22.98 - 22.78 23.80 -
L1v 214.94 214.27 214.4 213.33 217.90 212.860.3
L28v 217.75 216.95 217.3 215.51 221.88 215.260.3

aThis work. The statistical error bars on the DMC energies are60.2 eV.
bReference 18.
cReference 19.
dExperimental values taken from the compilation given in Ref. 18, except for the footnote e value.
eExperimental value taken from Ref. 20.
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i j in Table II ~which correspond to transition

between seven valence and six conduction band energy
els e i), we performed a least squares fit to the DMC da
This was done by minimizingS@EDMC

i j 2(e i2e j )#2 with re-
spect to thee i , where the sum is over the 18 promotio
excitations. The resulting band energies may be compa
with the experimental data and equivalentGW/LDA num-
bers in Table III. For greater clarity the DMC andGW band
energies are also plotted in Fig. 1 together with the result
an LDA band structure calculation to guide the eye. T
energies at the top of the valence band have been alig
The DMC band energies around the gap region are in g
agreement with theGW and experimental data, but consi
tently lie slightly below them in the lower part of the valen
band.

In our previous work on excitation energies in silicon,6 we
performed an analysis of the fraction of correlation ene
recovered by the DMC simulation. This percentage w
found to decrease slowly with increasing excitation ener
However, because the magnitude of the correlation contr
tion increases rapidly with increasing excitation energy
DMC higher excitation energies were somewhat too lar
This analysis indicated that the residual errors in the DM
excitation energies are mostly due to the errors in the no
surfaces of the excited-state guiding wave functions ra
than in the ground state. These conclusions apply equ
well in the present case of diamond.

VII. SPLITTING RESULTS

Here we investigate the energy splitting for the direct e
citation of an electron across the band gap of diamond at
G point. The hole orbital is one of the triply degenera
v-
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e
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al
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e

single-particle orbitals at the top of the valence band w
k5(0,0,0). Under the symmetry operations of the crysta
diamond, a Bloch orbital transforms as a representationGkp

of Oh . The hole orbitals at the valence band edge in f
transform as theG258 representation ofOh , according to the
standard notation.12 The electron is excited into one of th
triply degenerate orbitals at the bottom of the conduct
band. These transform as theG15 representation ofOh .

FIG. 1. The DMC band structure compared withGW and ex-
perimental data, overlaid with an LDA band structure.
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There are a total of nine determinants that may be form
with this set of orbitals, and these determinants form a se
basis functions for a reducible representation of the sp
group. As noted in Sec. IV B, this reducible representat
decomposes toG28% G128% G15% G25.

The VMC excitation energy results for theG258v→G15c
transition using the nine possible wave functions deriv
from the mixed symmetry orbitals produced by theCRYSTAL

code were 7.04,7.05,7.07,7.08,7.10,7.11,7.30,7.32,7.35
60.08 eV ~average 7.16!. The four correctly symmetrized
wave functions gave excitation energies of 6.98,7.06,7.
and 7.18 eV60.08 eV~average 7.09 eV! ~for G25,G128 ,G15,
andG28 respectively!.

DMC calculations of the same excitation energies ga
6.69,6.75,6.84,6.99,7.00,7.18,7.21,7.28, and 7.48 eV60.2
eV ~average 7.05 eV! in the unsymmetrized cases. As me
tioned earlier, the fixed-node approximation used in
DMC calculation breaks the degeneracy between the dif
ent rows of the multidimensional representations. The sy
metrized DMC results were 6.73, 6.80, and 7.48 eV~for the
three rows ofG25), 7.02 and 7.07 eV~for G128), 6.85, 7.00,
and 7.14 eV~for G15), and 7.25 eV~for G28) again with an
error bar of60.2 eV. This fixed-node splitting is thus com
parable in magnitude to the splitting observed in the unsy
metrized case.

The first point to note is that on average these numb
agree very well with the experimental number of 7.3 e
given that we expect our calculated energy to be lowe
slightly by the exciton binding energy arising from the inte
action between electron and hole. In both VMC and DM
cases the difference between the lowest and the highes
ergies using the unsymmetrized single determinants
around four times the size of the error bar. This demonstr
the importance of the level splitting effect in QMC calcul
tions of excitation energies. In the calculations perform
here, the magnitude of the splitting observed with the sy
metrized trial functions is not significantly different from
ed
of
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that using the unsymmetrized single determinants. The la
est and smallest VMC energies do not explicitly emer
from the symmetrized calculations as predicted by the the
of Sec. IV C, but the statistical error bars are too large
this to be of significance.

VIII. CONCLUSIONS

The DMC method provides a unified framework for ca
culating accurate ground- and excited-state energies.
fixed-node approximation works to our advantage by p
venting variational collapse to lower energy states of
same symmetry, allowing calculations of both direct and
direct excitations. The accuracy of the excited-state ener
is determined by the quality of the nodal surfaces of
guiding wave functions. In the case of diamond, good agr
ment was found between DMC and the availableGW and
experimental data. The problem of level splitting arises
calculations involving a many-particle trial function bui
from arbitrary degenerate single-particle orbitals. We ha
performed a group theoretical analysis of this effect, a
have shown using actual numerical simulations that it is s
nificant for the case of diamond. Using symmetrized tr
wave functions with determinants composed of sing
particle orbitals obtained from an LDA calculation, we fin
that the fixed-node approximation introduces a splitting co
parable in magnitude to this level splitting in diamond. W
have further amplified the nature of variational principles
QMC calculations of excited states.
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20I. Jiménez, L.J. Terminello, D.G.J. Sutherland, J.A. Carlisle, E.L

Shirley, and F.J. Himpsel, Phys. Rev. B56, 7215~1997!.
21Landolt-Börnstein Numerical Data and Functional Relationship

in Science and Technology, edited by O. Madelung~Springer,
Berlin, 1982!, Vol. 17, p. 36.


