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Minimum principles and level splitting in quantum Monte Carlo excitation energies:
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A diffusion and variational quantum Monte CafdMC and VMC) study of excitation energies in diamond
is reported. Good agreement is found between the DMC results and results fr@Wiapproximation and,
where available, with experiment. A group theoretical analysis is provided of the level splittings arising from
the use of arbitrary degenerate single-particle orbitals in the construction of ground- and excited-state deter-
minants. The results are discussed in light of the recently demonstrated variational theorems for excited states
in the DMC study.

I. INTRODUCTION II. VARIATIONAL PRINCIPLES FOR EXCITED STATES

For a trial wave function of a definite symmetry the en-
ergy calculated within the VMC method is greater than or

accurate wave-function-based treatment of quantum many-
gual to that of the lowest energy state of that symmetry. The
body effects, and may be used to compute the energy of both -~ . o . :
variational principle can be extended to higher excited states

ground and excited states of molecules and solids. They are” . - I . .
. . o by diagonalizing the Hamiltonian in a basis of states linearly
particularly attractive for applications to large systems be- )
: independent to exact states of the same symmetry with ener-

cause the computational cost scales as the cube of the system

) L . gies lower than the desired state, which we refer to as the
size, which is highly favorable when compared with other . L 7 .
. generalized variational theorenin practice one can usually
correlated wave-function methods. : T i )
) obtain reasonable approximations to the energies of higher
A number of QMC techniques have been used for calcu- _ " - .
. X . . excited states through the nonvariational procedure of substi-
lating excited state energies. The methods we discuss he{

h th t tually simol thev involve th Sting occupied orbitals with the appropriate virtual orbitals
are perhaps the most conceptually simpie as they In\VoWe thig 1o a1 determinant and directly evaluating the VMC en-
construction of a trial wave function to model each excited

. . . . ergy without orthogonalization to lower energy states. A
state. Using such a trial wave function in a variational Monte 9y g 9y

o ' o 3 common procedure is to optimize the Jastrow part of the trial
Carlo" (VMC) or fixed-node diffusion Monte CarfdDMC)  ¢,nction for the ground state calculation and then to use the

calculation then yields an approximation to the energy of the;ame Jastrow factor for the excited states, the trial function
excited state. This type of method was first used for Smalhiffering only in the orbitals making up the determinant.
molecule$ and more recently has been used for excitationpractical tests have shown that reoptimization in the excited
energies in solid$:® state changes the computed energy by less than the usual
The trial wave function is central to VMC and DMC statistical error bar of a few hundredths of an eV per atom.
methods, as it controls both the statistical variance and the The nature of variational principles within the DMC
final accuracy obtained. Typically it is taken to be a deter-method is significantly different. If a fixed-node constraint is
minant of single-particle orbitals derived from Hartree-Focknot imposed on the wave function, propagation of the system
(HF) or Kohn-Sham density functional theofi¢S DFT) cal-  in imaginary time does not maintain the fermionic symmetry
culations multiplied by a Jastrow factor that explicitly corre- of the starting state and the solution decays towards the
lates pairs of particles. Trial wave functions for excited statedosonic ground state. This difficulty is a manifestation of the
are formed by modifying the determinantal part of thefermion sign problem. Most DMC calculations therefore use
ground-state trial function. In the calculations reported herghe fixed-node approximatidhyhich for most applications
we form a trial wave function for an excited state by replac-is both accurate and numerically stable. The basic idea is
ing an occupied orbital in the ground state determinant by guite simple. The trial many-electron wave function is used
virtual orbital. This corresponds to the physical situation into define a many-electron nodal surface. The fixed-node
an optical absorption experiment where an electron is excite®@MC algorithm maintains the nodal surface of the trial wave
from the valence band into the conduction band. Two quasifunction, which enforces the fermionic symmetry and pro-
particles are introduced into the system, the electron anduces the lowest energy many-electron wave function con-
hole, which interact and form an exciton. sistent with this nodal surface. It is therefore the fixed-node
In this paper we use the VMC and DMC methods to studyconstraint that allows the estimation of excited state energies
excited states in diamond. We analyze the symmetry of then DMC calculations.
many-body trial wave functions for the excited states, which The nature of variational principles within the fixed-node
is useful in discussing the splitting of the energy levels dueDMC method was recently explored by Foulkes, Hood, and
to interaction effects and the application of variational theo-Needs’ If one models an excited state that is the lowest
rems to the calculated energies. energy state of a certain symmetry with a trial wave function

Quantum Monte CarléQMC) methods offer a direct and

0163-1829/2000/62)/23308)/$15.00 PRB 62 2330 ©2000 The American Physical Society



PRB 62 MINIMUM PRINCIPLES AND LEVEL SPLITTING IN . .. 2331

without a definite symmetry, there need not be a variationatlifferent ways. Since these nine excited state determinants
principle for the fixed-node DMC energy. Foulkes, Hood, may consist of different linear combinations of basis func-
and Need3 showed that even if one chooses a trial wavetions that transform as different representations of the sym-
function with a definite symmetry, then the resulting fixed- metry group of the many-electron Hamiltonian, there is no
node DMC energy needot be above the lowest energy state reason why they should form a degenerate set, and in general
with that symmetry. Under some circumstances the fixedthey do not. In fact, no ninefold degenerate irreducible rep-
node DMC algorithm can break the symmetry of the trialresentation exists at thE point for any of the 230 space
wave function. It turns out that if the trial wave function groups.
transforms according to a one-dimensional irreducible repre- The precise linear combinations of degenerate single-
sentation of the symmetry group of the Hamiltonian, then theparticle orbitals obtained from our HF or DFT electronic
fixed-node DMC energy must lie above the energy of thestructure code are subject to the whim of the diagonalizer. In
lowest state of that symmetry, but if the irreducible representhe next section the procedure for decomposing this reduc-
tation is of dimension greater than one, then the fixed-nodéle basis into its component irreducible representatiansl
DMC energy can lie below the exact enefgweaker varia- hence finding the correct linear combinations of determinants
tional bounds may then be obtained by choosing trial functhat transform according to these irreducible representations
tions transforming according to one-dimensional irreduciblewill be demonstrated. It will also be shown that in principle
representations of subgroups of the full symmetry group. such symmetrized wave functions give the maximum pos-
Despite this situation, fixed-node DMC seems to worksible level splitting.
well as a practical tool for computing excitation energies,
even for the higher states of a given symmetry. The reason
for this is that the energy of the excited state would be exact IV. GROUP THEORETICAL ANALYSIS
if the nodal surface of the trial wave function were exact, so A. Basic ideas
the accuracy of the nodal surface is the key issue. If the ) ) ) ) )
nodal surface of the trial function is inexact, then the DMC ~ First we consider the relationship between the interacting
wave function may not have the same symmetry as the trigHamiltonianH used in QMC and the noninteracting Hamil-
function, but the imposed nodal surface acts as such a strorignian from which the single-particle orbitals are obtained. In
constraint on the DMC wave function that it effectively pre- the QMC calculation, the infinite crystal is represented by a
vents significant deviations in the energy. finite simulation cell subject to periodic boundary conditions.
The primitive translation vectors of this supercell are taken
to be integer multiples of the primitive translation vectors of
ll. LEVEL SPLITTING the underlying crystal lattice. With these boundary condi-

The difference between the symmetry group of the Hamil-t'ons the interacting Hamiltonian can be written as

tonian from which the single-particle orbitals are obtained LY N N .
and that of the full interacting Hamiltonian with explicit A 2

. . . H=—— ‘4 3+ -
electron-electron interactions means that a reevaluation of 2 2, Vi E, v(r;) tz % |r,-—rj—tS|’
the degeneracy classifications is required. In particular, if the N - RN - .
single-particle problem involves the partial filling of local- f}o(:Z ,.gg) v
ized degenerate energy levels, then one can build a number
of different Slater determinants from the degenerate orbitals. @
If the matrix elements of the interacting Hamiltonian be-where{t%} is the set of translation vectors of the simulation
tween these Slater determinants are nonzero, then the degeamll lattice and ther;} denote the positions of thd elec-
eracy of the states of the single-particle problem will betrons in the cell. The potential(r) has the periodicity of the
lifted and we will obtain a multiplet structure. In a situation set{tP} of primitive translation vectors of the crystal lattice.
where the wave function is localized in some sefesg., in Now define a single-particle Hamiltoniat}, consisting of
a]tc]?ms or |solateoll p?m_t de;e‘)\'tml'% may be ar|1 |m|por;[_ar_1t the kinetic energy and external potential operators for a
effect. In QMC calculations for solids spurious level splitting single electron in the many-body system. Bdﬁb and the

can occur due to.the f|n|te_5|ze of _the S|mulat|0|j cell. lefer—HF or KS DFT Hamiltonian giving the single-particle orbit-
ent choices of single-particle orbitals to describe the wave

function of the excited electron and the hole lead to differenf® Is are invariant under the same set of_symmetry operations,
. S : o hamely the set of one-electron coordinate transformations
values of the exciton binding energy. This splitting would

disappear in the limit of a large simulation cell but up until {T1={Ralta+t"} of the crystalline space grouj Ho]. Next
now it has not been considered in QMC calculations. consider the noninteracting many-particle Hamiltonidp
Consider, for example, the direct promotion of an electron=3,A} . This is invariant under a grou H] of operations
across the band gap at thepoint in diamond(i.e., al's5,  that are tensor products of elements ofg[FI})]. For ex-

—1I'15. optical absorption In a one-electron ground-state A . . .
ample, if Hy contains three electrons with labdlg,k and

calculation thd",5, level at the top of the valence band and : L ) .
the conduction banH . level are triply degenerate. A QMC each has associated with it a set of coordinate transformation

calculation of the energy of this excited state is carried ousuch as{T;}, then the grougi[H,] consists of all possible
by replacing one of the valence band orbitals with a conducProductsT;T;T.

tion band orbital of the same spin in the determinantal part of The reduction in symmetry due to the interelectron Cou-
the trial wave function. This may evidently be done in ninelomb termV,, means that the interacting Hamiltoni&hin

ee
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Eq. (1) is invariant only when the same operation is applied The orbitals in the determinant are Bloch functions, each
to all electrons simultaneously. In the above example, thevith an associated wave vectior In the preliminary HF KS
group of tensor product Operations form|ﬁbq] would thus DFT Cal_cu_lation_the orbitals are C_alculated on a Monkhorst-
be restricted to those witlh; =T;=T,. Evidentlyl:| is also Pack grid in reciprocal space defined by

invariant under translations of any one electron by a super- 3
cell lattice vectort®. Such operations are not relevant in any k=ke+ >
discussion of degeneracy classification, however, and will i=1

not be considered to be part of the grodpH] in what  yhere thek; are the fundamental vectors of the reciprocal
follows. If defined in this way, the groug[H] is a proper |attice andl; andn; are integers. The total nhumber of sam-

:T:)Ki (0<l,=n;—1), (5

subgroup ofg[H,] and is isomorphic t&[ Hj]. pling points isN=n; X n,Xxn,. The fractional displacement
The trial many-electron wave functions used in our QMCKg is often taken to be zerghis will be our choice in the
calculations are of the Slater-Jastrow type, following) though different choices can lead to more effi-
cient sampling nets and reduction of finite size effects in
D(ry, ... =Dy, ... rn0ODHrNI21y -2 ofN) QMC . In general, a determinant of single-particle orbitals
N N whosek vectors lie on such a mesh forms a many-particle
wave function for ann;Xn,Xns; simulation cell with an
><exp< ,21 X(ri)_% u(rij) |, (@) associated simulation cell wave vecthr, equal to the off-

set of the mesh from the origif.

whereD' andD' are up-spin and down-spin determinants of In the general single-particle case we denote by
single-particle orbitals and there ake=N;+ N, electrons. q&fj”(r) [t=1,2,... M(k), andj=1,2, ... d,] the set of
The determinants are multiplied by a Jastrow factor that conbasis functions of the unitary irreducible representafiéh
tains a one-bodyy function invariant under all coordinate of the space groug, whereM (k) is the number of vectors
transformations of the groug[H}] and a spherically sym- in the star ofk generated fronk by rotationsR;, andd, is
metric two-body correlation factar. either the dimension of thpth unitary irreducible represen-

The product of the up-spin and down-spin determinantgation of the point group ok,Gy(k) (wheng[ﬂio] is a sym-
(call it D) of the Slater-Jastrow function transforms as amorphic group or the dimension of theth relevant irreduc-
basis function of some irreducib{barring accidental degen- ible representation of the group of the allowed wave vector
eracie$ representatiorl“g[,qol of the noninteracting many- G(k) (when QU:'B] is nonsymmorphic Then (a) ¢It<jp(r)
particle Hamiltonian, since it is an eigenstate of the full HFis a Bloch function with wave vectdR.k, and(b) the func-
or KS DFT local-density approximatiof.DA) Hamiltonian  tions ¢'ﬁ’(r) (j=1,2,...d,) form a basis for the unitary
which has the same 'symmetry group. This_ representationreducime representation (k) when g[p'io] is a sym-
may be decomposed in terms of the irreducible representay, nic group or a basis for the relevant ireducible repre-
tions of the subgrougH]: sentation ofG(k) wheng[H}] is a nonsymmorphic group.

Since the group of the full many-electron Hamiltonian
G[H] is isomorphic tag[ H}], each eigenstate ¢f and each
of the many-electron states previously labele#t)

The deter_mlnant may then be written asalln_ea.r Combmat'orLDnmexr[J] can thus be labeled in terms of the single-
of determinants with these definite symmetries:

- g 1 ~ 2 -~ DY M -~
oo =Tarm®Tqa® - OT gy - ©

particle Iabels\Iffjp(rl,rz, ... ,Iy) using the standard nota-
tion in which the representatidp corresponds ton and the
D=E amm, (4) row tj corresponds ta.
mn

where D} transforms as thath row of the representation B. Symmetry properties of excited determinants

F;[H]' For any symmetry operatioil of the groupg[ﬂ], the
Since the Jastrow factor epdj is invariant under all op- action of the corresponding scalar transformation operator
erations ing[H] the functionsD ' exd J] are basis functions P(T) on a determinanD, is given by

of the irreducible representations of this group. The unsym- d

metrlged functlorDexp_[J] is in genergl a b§15|s fgnctlon qf a P(T)D = 2 T'on(T)Dy, (6)
reducible representation @ff H], while D itself is a basis n=1

function of an irreducible representation GfHo]. Since  where, for the example of thE,s,—I'15 transition in dia-

G[H] is isomorphic tog[Hy], each representation and basismond considered earlier, the dimensidris nine and the

function of G{A] can be labeled in terms of a representationfépresentatiod’,, is reducible. Since th®, form an ortho-

and basis function oﬁ[ﬂb]. Thus one can use the labels that normal set, the matrix whose elements are

denote the transformation properties of the single-particle or-

bitals to denote how each many-electron Slater-Jastrow wave (T)= J D¥P(T)D,, dr (7)

function D] ex{ J] transforms under the operationsgﬁﬂ].
We now discuss the nature of these labels. is unitary.
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TABLE |. Decompositions into irreducible representations of possible excitations in diamond.

Excitation

Iy,—T0="y

I'yy—=Tis=I1s

Iy—Llie=Ly

= Xe=Xy

Posy—La=L1®L,®2L 3
Dosy—=T1se=T0 @12 @150 o5
Iag,—Lic=L1®Ls

Pasry = X1c= X1 & X380 Xy

X1py—= 15 =X1® X3 X4
X1py—=X1e=X10 XD X3 X4® 1@ 0@ g @5 @ 1@ 5
Xap—= T 15 =X10X@ X3

Xap—=T2c=X3

Xgp—L1c=Lo®L3®Ly@Ly
Xap—=X1e=X10 XD X3P XD 15 @ o5 @M 15@ 1 55
Ly, —Lac=X1®Xo@X3®Xs@ 1,0 1501 55
Loy—Tise=L1®L3
L1,—L3c=X18Xo®X3BXy® 1 10@ ' 1581 55
Li,—Il5=Lo@®Ls

Li,—Li =X X0 @1 s

Ly, —T2c=L3

L3y —L3c=2X1@2X,02X302X,01 1/ @15 @15 ® 21" 15821 55
Lyy—Ili5=L1®L,®2L3
L3iy—L1c=X10Xo@X3®X4D M1 @1 1501 55
L3y, —X1c=L1OL,®2L30L DL,y ®2L 5

Transformation of an excited state functioW?  Since the determinant, d&P(T)], of each matrix represen-

=D, exdJ] gives tation is a real number for aX22Xx 2 simulation cell in dia-
mond the ground-state Slater-Jastrow functioff g
d =D'D'exgJ] is invariant under all operations of the group
P(T)Dexdd]= > Tnn(T)DexdJ], (8)  and thus belongs to the identity representafiéi®P=1.
n=1 To construct an excited-state wave function one of the

) . . ground-state valance orbitals is replaced in, €ay,with a
where in general’,(T) is reducible. To decompose the conduction orbital. One can show in this case that the char-

reducible representation of the arbitrarily excited determi-gcter of the reducible representation in E8).for diamond is
nant into its constituent irreducible representations as in Eq.

(3), we first require an expression giving the character sys-
tem of t.he reducible representation. .This may be obtained by X(M=xt01e( T Xelectrod T). (10)
evaluating the trace of thE(T) matrices for each class of
symmetry operator as follows.

Consider the Slater matrix for each spin component,The “hole” subscript refers to the characters of the irreduc-
where each row corresponds to a different single-particle orible representation of the single-particle valence orbifgk(
bital and each column to a different electron position. Appli-for the simple examp)ethat is excited to a virtual orbital
cation of a scalar transformation operat{T) transforms (e.g.I';5) with its corresponding characters denoted by the
each single-particle orbital in the matrix into a linear combi-“electron” subscript. There are well-established procedures
nation of the orbitals in its degenerate set with coefficientdor finding the characters of the irreducible representations of
F't‘j"(T). Using the definition of the determinant one can ex-the nonsymmorphic space group of the diamond structure
pand the transformed determinant into a sum of determinantsletailed for example, on pp. 242-245 of Ref).18aving
of orbitals. Noting that all of these determinants vanish exthus derived the character system of the reducible represen-
cept those containing a different orbital in each row, one caitation, it may be decomposed into its irreducible components
show that the ground state in diamond whktf> 0 transforms ~ following the usual prescription. For the case at hand, the
as follows, where each determinadf andD' in Eq. (2) decomposition iy, &1 &1 156155 Where the standard

consists of the same closed shell of orbitals: notatiort* for the irreducible representations has been used
(see, e.g., Table D.2 Ref. L2Table | lists all such decom-
occupied positions of the representations for each of the excitations in
PT)Dl= [ defr*(T)]D'". (99  diamond considered in this paper, derived from a straightfor-
kp ward but tedious computation of each term in Et).



2334 M. D. TOWLER, RANDOLPH Q. HOOD, AND R. J. NEEDS PRB 62

To determine the correct linear combinations of determi- dp
nants that give wave functiongs(r,,r,, ... ry) of a defi- E=D E,> |al|>=2 |AP’E,, (16)
nite symmetry we apply the projector pom=1 P
d, . whereS |AP|2=% 3, %[al|?=1. Thus for any arbitrary
E gg xP(T)*P(T) 1D normalizable function its expectation value is bounded by
to each of the possible determinant states. In performing this .
operation in diamond we need only consider the smaller de- rrynEﬁEsm:vEp, (17)

terminant composed of orbitals from the partially occupied
valence state from which the electron was removed and theh h | f the bound icallv wh
partially occupied conduction state into which the electron’/ere the energy can equal one of the bounds typically when
was added. For example, for tHeys,—T ;s calculation the wave function transforms as a basis function of an irre-
each of the states is threefold degenerate so one needs %C'b.le representation. o

apply a projectorfor each of the four different symmetries It is not cleara priori whether the splitting is large

to a 3X 3 determinant, composed of two valence orbitals anaenough to warrant the extra compL_JtatlonaI effort that IS evl-
a conduction orbital. dently required to take account of(gay, by computing ex-

citations involving all nine determinants and performing
some sort of averageOne could justify neglecting such

measures if one knew the maximum possible splitting was
For determinant® , that transform among themselves assufficiently small relative to the attainable error bars on the

C. Level splitting

in Eq. (6) the expectation value excitation energies.
. This is the end of the story for the VMC case. The DMC
(Dmexd J]|Ho|Dmexd J1) =E, (12 case is somewhat more complicated, since the use of the

is independent of the hole and particle orbitals used to fom1;|xed-node approximation may further split each state if the

these excited determinants. When the interacting HamiItrlal wave function has a definite —symmetry

. P ) . iIf{‘]-p(rl,rz, .. .,I'n), and transforms according to an irreduc-
tonian of Eq.(1) replacesH, in these expressions a splitting jhje representation of dimension greater than one, such as

arises from the interelectron Coulomb term; its magnitude ISvhenk = X andp=1. The nodal surface of the trial function
determined by will evidently depend o (the row of the irreducible repre-
sentation, and hence so may the DMC energy, as the DMC
< Dexd J] Dmexq3]> : algorithm may break the symmetry of the trial wave function
in this case. This effect is obviously absenkf corresponds

The use of arbitrary mixed symmetry orbitals in the trial to & one-dimensional representation suct&s®P=*.

function will thus produce an essentially random shift away

from the true energy. Here we show that the maximum shift D. Variational principles

is produced using the symmetrized trial functions that trans- ) ] ) o

form according to the appropriate irreducible representations. For the VkMC case, using a wave function with a definite
Any arbitrary normalizable function can be decomposedsymmetryW °(ry,r5, ... ry) the VMC energy is an upper

into a linear combination of basis functions of the irreduciblePound to the lowest exact energy with that same symmetry.

representations of the gro@fjH] of the Schrdinger equa- Consider, for example, the decomposition
tion. We therefore write the many-body wave functiénas

i>]

sl

2o

F257U—>X102X1@X3@X4. (18)

Forming a VMC state with symmetrs (say will give a
_ _ _ VMC energy that is an upper bound to the lowest exact en-
whereWP is some function transforming as theth row of ergy state of symmetri.
the unitary irreducible representatid®. Let Wf, and¥, be, In diamond with a X 2X 2 simulation cell a variational
respectl\_/ely, basis functions for the unitary irreducible rep-principle applicable to the DMC method will apply (d) the
resentationd™ andI'® of the space group. The expectation ground state(2) the lowest energy state of each trial wave
value of the Hamiltonian is then function of a definite symmetry¥'{(ry,r5, ... ry) when
d k=0 (I' point) andp corresponds to a one-dimensional rep-
E— aP* a9(WP | way. 14 resgr)tatlon such d%;, and(3) the lowest energy state_ w_|th a
zp: m§=:l zq: T A WrlHI¥R) (14 definite k=X or k=L, because of a weaker variational
principle?® since the group of translations contains only one-
dimensional irreducible representations and is a subgroup of
G[H]. So wave functions that transform &=y X1,X5,X3,
or X, with a definitek are all bounded below by the same
PPIAIPD=E 5 5. 15 lowest energy of an exact state with a defirkite X. Obvi-
(Wl HIW) =Epdpadmn (19 ously the DMC variational principle has far less utility than
Hence the VMC variational principle.

dP
v=> > alwP, (13)
p m=1

dq

n=

Assumingl’® andI'® are inequivalent ifp#q, but are iden-
tical if p=q), the Wigner-Eckart theorem may be used to
show that
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TABLE Il. Excitation energies of diamond in eV.

Excitation DMC? GW GW* LDA P Expt¢

| AP 32.18 30.51 30.5 26.93 -

| P 41.05 37.42 37.8 34.45 -
I,—Lie 35.79 33.51 - 29.74 -
I'y,—X1e 30.69 29.18 - 25.98 -

Tos,—T s 7.13 7.63 75 5.58 7.3
g, —Lae 10.16 10.23 - 8.76 -
s, — X1c 5.71 6.30 - 4.63 -
X1,— X1e 20.49 20.10 - 17.24 -
Xay—T15 14.41 14.32 - 11.84 -
Xap—L1c 17.08 17.32 - 14.54 -
Xap— X1c 12.70 12.99 - 10.89 12.5,12.6
Xay— Xac 26.90 26.19 - 23.17 -
Lory—Lye 27.94 27.58 - 23.90 -
Ly,—Lyc 25.13 24.9 - 21.72 -
Lyy—T 15 10.78 10.61 - 8.36 -
Lary— Xac 22.41 22.48 - 19.69 -
Lar,—Lie 13.32 13.61 - 11.17 12.5, 16.3
Ly, — L 22.03 21.12 - 18.45 24.0

&This work. The statistical error bars on the DMC energies-afe2 eV.
PReference 18.

‘Reference 19.

dExperimental values taken from the compilation given in Ref. 21.

V. QMC CALCULATIONS Brillouin zone. These aré,0,0 (theT point), (0,03)2x/a
In this section we give some brief practical details of our(the X poind, and @'%’%)?”/a (the L poiny.
diamond QMC calculations. The electron-ion potentigl The x function used in our Jastrow factor has the full

was modeled by a norm-conserving Trouiller-Martins LDA Symmetry of the diamond structure and is expressed as a
Fourier series containing 16 inequivalent parameters. We

pseudopotential. The infinite summation of interparticle Cou-

lomb interactions in the periodic system can be handled Wit?"sedt. spherlﬁglLy S){.mmter:rlc Ipa;allel ?ndt antiparallel ?ﬁ!n
the usual Ewald interaction potential but only at the cost o unctions, which sa Isty 1€ electron-electron cusp conaitions
and contain a total of eighteen parameters. The optimized

potentially large finite-size errors. An alternative approach is . PR .
. " S parameter values were obtained by minimizing the variance
to use our recently introduced “model periodic Coulomb
: T . of the energy.
interaction,” which greatly reduces such errdtdn excita-
tion calculations the choice of interaction potential is less
important since the finite-size error largely cancels when tak-
ing the difference of excited- and ground-state enertars]
for simplicity we have chosen to use the Ewald interaction in  Diffusion Monte Carlo simulations were performed for 18
this study. We used an fcc simulation cell built from a 2 separate promotion excitations involving orbitals ath,
X2X2 array of primitive cells, subject to periodic boundary andL wave vectors in diamond. In these initial calculations,
conditions and containing 16 carbon pseudoatoms and 6gromotions involving sets of degenerate orbitals were mod-
electrons. eled using the unsymmetrized orbitals obtained directly from
The Slater determinants were constructed from singleerysTAL95 Our calculated excitation energies are shown in
particle orbitals obtained from an LDA calculation using the Table Il together with the results of comparal€V and
correlation functional of Ceperley and Aldéras param- LDA calculations!®'® The GW method is known to give
etrized by Perdew and Zunger.The LDA orbitals were extremely good results for weakly correlated systems such as
computed using the progrdficrysTALgs at theT” point of  diamond, and the varioud W calculations are seen to be in
the simulation-cell Brillouin zone using an atom-centeredexcellent agreement with one another. The experimental data
Gaussian basis set. The basis set was made up of four uare quite sparse, but where available they are in reasonable
contractedsp functions and onel polarization function per agreement with th&W data. The LDA data show the well-
pseudoatom, with exponents optimized in the perfect 6lid. known underestimation of the excitation energies. For the
Although thel-point scheme does not give optimal Brillouin low energy excitations the DMC energies are a little too
zone samplind? it does preserve the full symmetry of the small, while for larger excitation energies they are too large.
system and allows comparison with a wider number of esNevertheless the agreement between the DMC results and
tablished results. ThE point of the simulation-cell Brillouin  the GW data is very encouraging.
zone unfolds to three inequivalektpoints in the primitive To obtain DMC band energies from the 18 excitation en-

VI. EXCITED-STATE ENERGY RESULTS
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TABLE lll. Band energies of diamond in eV.

Band DMC? GW° GW* LDA P HF?2 Expt. ¢

| [P 15.83 14.54 14.8 13.10 24.87 158.5
| R 7.23 7.63 7.5 5.58 14.46 7.3
oy 0.0 0.0 0.0 0.0 0.0 0.0
ry —25.22 —22.88 -23.0 —21.35 —29.19 —24.2+1,-21*1,

—23.0+0.2°¢

Xac 19.48 19.5 - 16.91 29.63 -
Xic 5.58 6.3 - 4.63 13.42 -
Xap -7.15 —6.69 - —6.26 -8.41 -

X1y —-14.91 -13.8 - -12.61 -17.73 -

Loie 18.83 18.14 17.9 15.67 27.61 2a.5
Lac - 10.23 - 8.76 18.51 -

Lic 10.19 10.63 - 8.39 18.32 -
La, -3.20 —2.98 - —2.78 —3.80 -

Ly, —14.94 —14.27 —14.4 —13.33 —17.90 —12.8+0.3
Lo, —-17.75 —16.95 —-17.3 —15.51 —21.88 —15.2£0.3

&This work. The statistical error bars on the DMC energies-afe2 eV.

bReference 18.

‘Reference 19.

dExperimental values taken from the compilation given in Ref. 18, except for the footnote e value.
°Experimental value taken from Ref. 20.

ergiesEf ¢ in Table Il (which correspond to transitions single-particle orbitals at the top of the valence band with
between seven valence and six conduction band energy lek=(0,0,0). Under the symmetry operations of the crystal in
els €;), we performed a least squares fit to the DMC datadiamond, a Bloch orbital transforms as a representdtith
This was done by minimizing;[EgMC—(ei—.gj)]2 with re-  of Oy,. The hole orbitals at the valence band edge in fact
spect to thee;, where the sum is over the 18 promotion transform as thé',s representation 0®;,, according to the
excitations. The resulting band energies may be comparestandard notatiol? The electron is excited into one of the
with the experimental data and equivalé®W/LDA num-  triply degenerate orbitals at the bottom of the conduction
bers in Table IIl. For greater clarity the DMC a®W band ~ band. These transform as tHés representation ofOy,.
energies are also plotted in Fig. 1 together with the results of

an LDA band structure calculation to guide the eye. The é i

energies at the top of the valence band have been aligned 200
The DMC band energies around the gap region are in good
agreement with th&W and experimental data, but consis-
tently lie slightly below them in the lower part of the valence
band.

In our previous work on excitation energies in silicowe
performed an analysis of the fraction of correlation energy 5071
recovered by the DMC simulation. This percentage was
found to decrease slowly with increasing excitation energy. g 0.0
However, because the magnitude of the correlation contribu—g
tion increases rapidly with increasing excitation energy the o503
DMC higher excitation energies were somewhat too large. §
This analysis indicated that the residual errors in the DMC “2-10.0
excitation energies are mostly due to the errors in the nodal
surfaces of the excited-state guiding wave functions rather -15.0
than in the ground state. These conclusions apply equally
well in the present case of diamond.

15.0

10.0 ¥

expt
DMC

GW - Ref. 18
GW — Ref. 19

X r L

-20.0

-25.0

*%0Oe

VII. SPLITTING RESULTS

Here we investigate the energy splitting for the direct ex-
citation of an electron across the band gap of diamond at the FIG. 1. The DMC band structure compared WiEW and ex-
I' point. The hole orbital is one of the triply degenerateperimental data, overlaid with an LDA band structure.
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There are a total of nine determinants that may be formethat using the unsymmetrized single determinants. The larg-
with this set of orbitals, and these determinants form a set oést and smallest VMC energies do not explicitly emerge
basis functions for a reducible representation of the spacom the symmetrized calculations as predicted by the theory
group. As noted in Sec. IV B, this reducible representatiorof Sec. IV C, but the statistical error bars are too large for
decomposes th, &' @1 1501 55. this to be of significance.

The VMC excitation energy results for tHéys ,— 1 15
transition using the nine possible wave functions derived
from the mixed symmetry orbitals produced by ttreySTAL
code were 7.04,7.05,7.07,7.08,7.10,7.11,7.30,7.32,7.35 eV The DMC method provides a unified framework for cal-
+0.08 eV (average 7.16 The four correctly symmetrized culating accurate ground- and excited-state energies. The
wave functions gave excitation energies of 6.98,7.06,7.14fixed-node approximation works to our advantage by pre-
and 7.18 e\=0.08 eV(average 7.09 eMfor I'55,1"15 ,I'15,  venting variational collapse to lower energy states of the
and[l',, respectively. same symmetry, allowing calculations of both direct and in-

DMC calculations of the same excitation energies gavedirect excitations. The accuracy of the excited-state energies
6.69,6.75,6.84,6.99,7.00,7.18,7.21,7.28, and 7.48-@% is determined by the quality of the nodal surfaces of the
eV (average 7.05 eMin the unsymmetrized cases. As men- guiding wave functions. In the case of diamond, good agree-
tioned earlier, the fixed-node approximation used in thement was found between DMC and the availaBl&/ and
DMC calculation breaks the degeneracy between the differexperimental data. The problem of level splitting arises in
ent rows of the multidimensional representations. The symealculations involving a many-particle trial function built
metrized DMC results were 6.73, 6.80, and 7.48(& the  from arbitrary degenerate single-particle orbitals. We have
three rows ofl",5), 7.02 and 7.07 e\for '), 6.85, 7.00, performed a group theoretical analysis of this effect, and
and 7.14 eMfor I';5), and 7.25 eMfor I',,) again with an  have shown using actual numerical simulations that it is sig-
error bar of=0.2 eV. This fixed-node splitting is thus com- nificant for the case of diamond. Using symmetrized trial
parable in magnitude to the splitting observed in the unsymwave functions with determinants composed of single-
metrized case. particle orbitals obtained from an LDA calculation, we find

The first point to note is that on average these numberthat the fixed-node approximation introduces a splitting com-
agree very well with the experimental number of 7.3 eV,parable in magnitude to this level splitting in diamond. We
given that we expect our calculated energy to be loweredhave further amplified the nature of variational principles in
slightly by the exciton binding energy arising from the inter- QMC calculations of excited states.
action between electron and hole. In both VMC and DMC
cases the difference between the lowest and the highest en-
ergies using the unsymmetrized single determinants is
around four times the size of the error bar. This demonstrates Financial support was provided by the Engineering and
the importance of the level splitting effect in QMC calcula- Physical Sciences Research CoulidiK.). Our calculations
tions of excitation energies. In the calculations performecare performed on the CRAY-T3E computer at the Edin-
here, the magnitude of the splitting observed with the symburgh Parallel Computing Center, and on the Hitachi
metrized trial functions is not significantly different from SR2201 computer at the Cambridge HPCF.

VIIl. CONCLUSIONS
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