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Abstract

Three-dimensional Fast Fourier Transforms (FFTs) are the main computational task in plane wave electronic
calculations. Obtaining a high performance on a large numbers of processors is non-trivial on the latest generation o
computers that consist of nodes made up of a shared memory multiprocessors. A non-dogmatic method for obtai
performance for such 3-dim FFTs in a combined MPI/OpenMP programming paradigm will be presented. Exploi
peculiarities of plane wave electronic structure calculations, speedups of up to 160 and speeds of up to 130 Gflops wer
on 256 processors.
 2003 Elsevier B.V. All rights reserved.
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1. Introduction

While the peak speed of computers is increas
rapidly, it becomes also increasingly difficult to obta
a significant fraction of this peak speed in real ap
cations [2]. This is due to an imbalance of the va
ous components of modern computers. A well kno
imbalance is the discrepancy between the high pro
sor speed and the slow memory access times.
other imbalance found on the latest generation of p
allel computers is that the bisectional bandwidth
too low compared to the processing power of a s
gle node consisting of several processors. Such
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E-mail address: stefan.goedecker@unibas.ch (S. Goedecke
0010-4655/$ – see front matter 2003 Elsevier B.V. All rights reserved
doi:10.1016/S0010-4655(03)00287-X
imbalance does not become visible in certain ben
marks consisting for example of dense linear alge
applications where the number of numerical ope
tions is much larger than the number of data acces
from memory or transfered among the different nod
Many high quality algorithm such as multigrid met
ods or fast transformations are however character
by a number of operations that is proportional to
number of data items or increasing only slightly fas
than this number (N log(N) for instance forN data
items). Then, necessarily, both types of imbalance
hamper the performance of such algorithms.

A standard low complexity algorithm is the Fa
Fourier transformation [5]. A single one-dimension
FFT requires asymptotically 5N log2(N) operations if
a standard radix two approach is adopted. A three
mensional FFT of a data set consisting ofN3 data
.

http://www.elsevier.com/locate/cpc
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requires 15N3 log2(N) operations. Performing a sin
gle 1-dim FFT results in a highly non-local memo
access pattern. By doing multiple 1-dim FFT’s o
can obtain stride one data access and consequen
much higher performance [7]. Multiple 1-dim FFT
can then be used as the building block for 3-d
FFTs. Strategies adapted to various computer ar
tectures, such as vector machines, RISC type work
tions and single processor node massively parallel
chines were discussed in Ref. [2], strategies for c
ters of vector computers in Ref. [1]. Obtaining hi
performance on massively parallel machines is d
cult since the total amount of data to be send aro
is N3 whereas the total number of operations is o
slightly larger namely of the order ofN3 log2(N). Rel-
atively simple solutions such as the one presente
Ref. [2] that were efficient on a well balanced m
chines such as a CRAY T3E are unfortunately not
ficient on most massively parallel machines compo
of multiprocessor nodes. It has already been rec
nized that overlapping the communication and co
putation part can speedup parallel FFT’s [3]. Such
overlapping strategy has been implemented for a
gle 2-dim FFT [4].

The programming paradigm proposed by the co
puter vendors for such machines is a combination
MPI [8] and OpenMP [9], where OpenMP is to be us
to coordinate the work of the various processors o
single node and MPI to coordinate the work amo
different nodes connected through a high-speed
work. The original idea was to use OpenMP for
fine grained parallelism on the node and MPI fo
coarse grained parallelism among the nodes. Un
tunately the current OpenMP implementations h
not lived up to the expectations of a truly fine grain
parallelism. For really high performance, OpenMP
present also requires coarse grained parallelism. C
sequently OpenMP is frequently not a supplem
to MPI but rather a competitor. As will be show
the standard MPI/OpenMP approach also fails for
dim FFT’s.

2. The basic algorithm

The notation of Ref. [2] will be taken over, i.e
small cap indices refer to untransformed real sp
indices and capital indices refer to Fourier transform
Fourier space indices. In this wayi1, i2, i3 denotes
the initial real space data set andI1, I2, I3 the
transformed Fourier space data set. The phys
dimensionsi1, i2, i3 andI1, I2, I3 can be split into
partial dimensionsj1, jp1, j2, jp2, j3, jp3, and
J1, Jp1, J2, Jp2, J3, Jp3. The second part of eac
index pair runs from 1 to the number of nodesnodes
and the first from 1 to the physical dimension divid
by the number of nodes. To simplify things, we w
assume that the dimension of the FFT is a multi
of the number of processors. In this case we have
instance,j1 = 1, . . . , n1/nodes, jp1 = 1, . . . ,nodes.
The actual programs allows for physical dimensio
that are different from the logical dimensions and
is thus not necessary that the dimension of the F
be a multiple of the number of processors. If
index that runs from 1 tonodes is really distributed
among the nodes it is put into brackets. In this w
i1, i2, j3, (jp3) denotes the initial real space data
distributed along the last dimension among the no
If, for example,i3 = 1,64, and we are using 4 node
then j3 = 1,16, jp3 = 1,4, which means that eac
node holds 16xy-planes in its memory. Analogous
I1, J2, (Jp2), I3 denotes the Fourier space data
distributed along the second, i.e.y-dimension.

In the context of plane wave electronic structu
calculations the Fourier space data set is smaller
factor of 8 compared to the real space data set [6]
to aliasing. The upper half of the frequency spectr
is discarded after the transformation along thex-, y-
and z-axis, reducing the data set by a factor of 2
each step.

In the following the organization of the algorith
with respect to the different nodes will be describ
This part is based on MPI and is similar to t
approach adopted in the CPMD electronic struct
code [6]. For the moment we will assume that o
node has only one processor. The OpenMP part
concerns the fact that one node consists of sev
processors will be introduced later.

We start with the initial real space data set distr
uted along thez dimension on thenodes nodes.

Input: i1, i2, j3, (jp3)

wherei1 = 1, n1, i2 = 1, n2, jp1 = 1,nproc, nodes =
1, n3/nodes. In order to obtain stride 1 in the inne
loop of our multiple 1-dim FFT, we first transform
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along the second dimension to obtain

multiple 1-dim FFT: i1, I2, j3, (jp3)

Since the upper half of the high frequency compone
is removed in electronic structure calculations we
move this part in the subsequent single processor r
tion. Depending on the convention the high freque
part can either be located in the middle or in the c
ners of the data set. In any case I2 has then only n/2
elements

Rotation and removal: I2, i1, j3, (jp3)

The same steps are repeated to transform along
x-axis:

multiple 1-dim FFT: I2, I1, j3, (jp3)

Rotation and removal: I1, I2, j3, (jp3)

The previous two transformations along thex- and
y-axis involved alwaysx–y-planes that were availab
on a single processor. For the transformation along
z-axis data distributed among several processors
needed and hence MPI calls. The previous data se
equivalently be written as

Previous data set reformatted: I1, J2, Jp2, j3, (jp3)

We now switch indices by local (single process
copying

Copy: I1, J2, j3, Jp2, (jp3)

The next step switches the last two indices by invok
the MPI ALLTOALL routine

MPI_ALLTOALL: I1, J2, j3, jp3, (Jp2)

The result can be reformatted:

Previous data set reformatted: I1, J2, i3, (Jp2)

Now all data for a single FFT along thez-axis are on
one processor and we transform to obtain

FFT: I1, J2, I3, (Jp2)

We could now bring this output data set into t
input format form I1, I2, J3, Jp3, but this would
require another MPI_ALLTOALL and another cop
It is preferable instead just to reorder locally to get

Copy: I1, I3, J2, (Jp2)
and to work then with Fourier space data that h
this format and are consequently distributed among
nodes along they-axis.

To transform from Fourier space back to real sp
all the steps just described are run backwards

This approach has the following advantages
requires only 1 MPI_ALLTOALL compared with 2
for a optimized general FFT [2]. As a consequence
number of single node copy operations is also redu
The overhead of the parallel version compared to
serial version is therefore less than 20%. The amo
of data moved around by MPI_ALLTOALL is reduce
by a factor of four compared to a general FFT, sin
the MPI_ALLTOALL routine is only invoked at the
last step (alongz-direction) where the data set
already shrunk by a factor of 4 (dimension n1/2 *
n2/2 * n3) due to the removal of the high frequenci

3. Timing results

The timing results presented in this section w
obtained on the Hewlett Packard Compaq AlphaSe
SC ES45 massively parallel computer, clocked
1 GHz. The dimension of the FFT was 1283 in Fourier
space and 2563 in real space. The timing measures t
following sequence of operations. A Fourier transf
mation of the wavefunction from Fourier space in
real space, a multiplication of the wavefunction in r
space with the potential and a back-transformatio
the wavefunction into Fourier space. This seque
of operations was applied to 64 wavefunctions unl
specified differently, but the reported timing is the a
erage time for one single sequence. In spite of the
eraging considerable fluctuations are however pre
in the measurements.

Table 1 shows the timing results for the MPI on
implementation. The speedup on a single node
rather poor on this machine(2.91/0.869= 3.35) and
is nearly equal to the speedup if the 4 process
are distributed among 4 different nodes. The sin
node speedup that was also measured on an o
Compaq SC232 and surprisingly we obtained a m
better speedup of 3.9. The striking feature of
result is however the following. If one uses mo
than one node one cannot substantially accelerate
computation by using 4 processes per node ins
of using 2 or even only one. In other words, f
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Table 1
Timing in sec of the MPI version. Horizontally the number
used processors per node varies (the maximum being 4), verti
the number of nodes varies. The number of processors is thu
product of the entries in the top line and leftmost column

1 2 4

1 2.91 1.57 (1.85) 0.87 (3.3)

2 1.63 (1.8) 0.95 (3.1) 0.60 (4.9)

4 0.88 (2.5) 0.58 (5.0) 0.39 (7.4)

8 0.54 (5.4) 0.30 (9.6) 0.23 (12.7)

16 0.25 (11.7) 0.16 (17.9) 0.13 (22.9)

32 0.13 (22.7) 0.086(33.7) 0.046(63.8)

64 0.066(43.8) 0.046(63.8)

128 0.040(72.0)

more than 4 processes one obtains a faster exec
time if one assigns only one MPI process per no
instead of clustering the same number of processe
the smallest possible number of nodes (i.e. havin
processes per node). This surprising feature is
to the behavior of MPI_ALLTOALL routine. For its
efficiency the bisectional bandwidth counts [2] a
for a constant number of processes this bisectio
band width is best if the processes are distribu
among the largest possible number of nodes. Rou
speaking, if 4 processes are running per node they
not send their data fast enough through the single
to the network that is available on each node. T
highest speed obtained in this series of measure
128 processors was 52 Gflops.

Table 2 shows the timing results for a pure Open
parallelization. The number of processes per node
this case limited by the number of processors per n
which is 4 for the Compaq SC ES45 parallel compu
which we are considering. For comparison we h
however in Table 3 also included the results on a
gle Hewlett Packard EV7 node, where one can go
to 16 processors. The OpenMP parallelization is ra
straightforward. The entire serial FFT part is cac
blocked [2] for optimal efficiency. This outer cach
blocking loop can easily be parallelized with OpenM
resulting in a fairly coarse grained parallelism. Nev
theless the OpenMP speedup of 3.2 is slightly wo
than the MPI speedup on a single node.

We have implemented for this FFT an tradition
MPI/OpenMP approach where each MPI process c
sists of 4 OpenMP threads. Such an approach ha
advantage that the total number of messages that
to be send around during the MPI_ALLTOALL ca
Table 2
Timing in sec of the OpenMP version on a single node of
Hewlett Packard Compaq AlphaServer SC ES45 as a function o
number of OpenMP threads. The speedup is given in parenthes

Numb. threads 1 2 4

Time 2.89 1.50 (1.9) 0.90 (3.2)

is reduced by a factor of 16 since the number of M
processes is reduced by a factor of 4. However the
tal amount of data to be sent remains the same. S
for the case of the FFT bandwidth rather than late
is the limiting factor, this approach offers no adva
tage over the pure MPI approach. This was confirm
by our timings, that were identical to within the fluct
ations to the timings presented in Table 1. In addit
this approach can not overcome the fundamental c
munication bottleneck. During the communicati
step performed by one thread all the other threads

If one would just like to do a single FFT as fa
as possible on a parallel machine of this type the c
clusion is clear. Grasp the largest possible numbe
nodes that can be used to do the FFT (i.e. 128 f
1283 FFT) and use then the pure MPI implementat
with one process per node. In practice two things
different. First one needs to do multiple FFT’s, seco
of all it is economically wasteful not to use the majo
ity of the processors on each node. Both requirem
can be reconciled as will be shown in the following

From the previous discussion it is clear that
most precious resource on a machine where each
consists of a multiprocessor is the bandwidth am
the nodes. Therefore we should strive to keep
network busy all the time. This is not the case in
two previous implementations. Phases of computa
during which the network is idle are alternating w
communication phases. The situation is similar to
traffic problems in a big city. If everybody starts
work at the same time in the morning there will
a traffic collapse. By staggering the beginning of
working hours a larger amount of rush hour traf
can be handled. Applying this simple idea to FFT
means the following. We subdivide all the proces
on our nodes into 4 groups. The first group conta
the threads number 0 on all the nodes, the sec
group all the threads number 1 and so on. Grou
is the first to start the calculation. Once it arrives
the communication stage the second group starts
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sing fro the
shown in
Table 3
Timing in sec of the OpenMP version on the Compaq EV7 as a function of the number of OpenMP
threads. The speedup is given in parentheses

Num. threads 1 2 4 8 16

Time 2.74 1.48 (1.85) 0.84 (3.3) 0.50 (5.5) 0.26 (10.4)

Fig. 1. Illustration of the computation phases (black) and the communication phases (hatched) of the 4 task groups. Time is progres
left to right. The requirement for the alignment of the communication stages is that they are not allowed to overlap. In the scenario
the lower part of the Figure this requirement results in idle time for the processes.
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calculation and hopefully the first group has finish
the communication stage once the second arrive
this stage. The third and fourth group start w
additional delays the calculation and in the ideal c
the communication stages of these 4 groups are
in conflict. The idea is illustrated in Fig. 1. In th
upper part we assume that the communication tim
less than a quarter of the computation time. In t
case the throughput will be exactly 4 times larg
compared to the case where we use only one pro
per node. This means that if we have a large eno
number of multiple FFT’s we can do 4 times as ma
FFT’s with the same number of nodes. The case wh
the communication part is more than a quarter of
computation part is illustrated in the lower part
Fig. 1. In this case the throughput is increased by
than a factor of 4, but nevertheless the throughpu
still increased.

The results of this approach are shown in Table
Adding more processes per node gives now a be
speedup for a small number of processors. For la
configurations going from 2 to 4 threads per no
does again not help very much since in this case
communication time is roughly half of the total tim
Table 4
Timing in sec of the non-conventional OpenMP/MPI implemen
tion for multiple FFTs. Horizontally the number of threads (whi
equals the number of processors) per node varies (the maximum
ing 4), vertically the number of nodes varies

1 2 4

1 2.93 1.72 (1.7) 0.84 (3.5)

2 1.62 (1.8) 0.84 (3.5) 0.45 (6.6)

4 0.88 (3.3) 0.46 (6.3) 0.25 (11.9)

8 0.47 (6.3) 0.25 (12.0) 0.14 (20.3)

16 0.24 (12.3) 0.13 (22.9) 0.081(36.4)

32 0.13 (22.6) 0.075(38.9) 0.050(58.4)

64 0.067(43.7) 0.037(79.0) 0.032(91.8)

128 0.036(81.2) 0.019(158) 0.018(163)

The largest performance is obtained on 128 no
independently of whether one uses 2 or 4 proces
per node. The speedup at the peak performanc
160 and the speed 130 Gflops which is more t
double of the speed that was obtained in the p
MPI approach. The 4 groups were defined as Open
threads because in this way it is easiest to clas
the processes into threads belonging to one n
The same goal could however be achieved by us
MPI task groups. Let us point out that this way
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Table 5
Timings in sec of the OpenMP/MPI approach as a function
the number of multiple FFT’s allowing for 4 threads per no
Horizontally the number of multiple FFT varies, vertically th
number of nodes

4 8 16 32 64

1 0.86 0.88 0.87 0.88 0.88
2 0.52 0.53 0.49 0.46 0.45
4 0.30 0.30 0.27 0.25 0.25
8 0.18 0.17 0.16 0.15 0.15

16 0.096 0.089 0.089 0.083 0.081
32 0.077 0.066 0.055 0.048 0.050
64 0.061 0.049 0.043 0.036 0.031

128 0.037 0.024 0.021 0.018 0.018

use OpenMP is highly non-standard. The Open
parallelization over the different multiple FFT’s
logically on top of the single FFT MPI-parallelizatio
Since the calculation of the different 3-dim FFT
are completely decoupled very few of the OpenM
features are needed.

Evidently this non-conventional OpenMP/MPI a
proach does not offer any advantage in case one
to do only a single FFT. Table 5 shows however t
already for a modest number of FFT’s one can m
substantial gains and that the asymptotic performa
is reached at around 32 multiple FFT’s.

4. Conclusions

Using state of the art serial optimization techniqu
and innovative parallel optimization techniques
were able to obtain very high performances of up
130 Gflops on 256 processors for the most time c
suming part in plane wave electronic structure cal
lations, namely the application of the local potentia
the wave function. This part consists essentially o
three-dimensional FFT. By exploiting other sources
parallelism, such as the parallelism over the differ
k points, it should be possible to obtain performan
of more than a Teraflop in electronic structure calcu
tions on the largest computers available today.

Acknowledgement

We thank the Hewlett Packard Company for givi
us access to their latest EV7 multiprocessor. We a
acknowledge the support of Gilles Zerah for th
project. SG thanks Phlippe Blaise and Gilles Civa
for interesting discussions on programming proble

References

[1] D. Takahashi, Applied parallel computing, Proceedings,
Lecture Notes in Comput. Sci. 1947, 2001, p. 316.

[2] S. Goedecker, A. Hoisie, Performance Optimization of Num
ically Intensive Codes, SIAM Publishing Company, Philad
phia, PA, 2001.

[3] P.N. Swarztrauber, Parallel Comput. 5 (1987) 197.
[4] C. Calvin, Parallel Comput. 22 (1996) 1255.
[5] C. van Loan, Computational Frameworks for the Fast Fou

Transform, SIAM, Philadelphia, PA, 1992;
E. Oran Brigham, The Fast Fourier Transform and its Appli
tions, Prentice-Hall, Englewood Cliffs, NJ, 1988.

[6] D. Marx, J. Hutter, in: J. Grotendorst (Ed.), Modern Metho
and Algorithms of Quantum Chemistry,http://www.fz-juelich.
de/wsqc/proceedings.

[7] S. Goedecker, Comput. Phys. Comm. 76 (1993) 294.
[8] P. Pacheco, Parallel Programming with MPI, Morgan Ka

mann, San Fransisco, CA, 1996.
[9] R. Chandra, et al., Parallel Programming in OpenMP, Mor

Kaufmann, San Fransisco, CA, 2001.

http://www.fz-juelich.de/wsqc/proceedings
http://www.fz-juelich.de/wsqc/proceedings
http://www.fz-juelich.de/wsqc/proceedings

	An efficient 3-dim FFT for plane wave electronic structure calculations on massively parallel machines composed of multiprocessor nodes
	Introduction
	The basic algorithm
	Timing results
	Conclusions
	Acknowledgement
	References


