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Abstract

Three-dimensional Fast Fourier Transforms (FFTs) are the main computational task in plane wave electronic structure
calculations. Obtaining a high performance on a large numbers of processors is non-trivial on the latest generation of parallel
computers that consist of nodes made up of a shared memory multiprocessors. A non-dogmatic method for obtaining high
performance for such 3-dim FFTs in a combined MPI/OpenMP programming paradigm will be presented. Exploiting the
peculiarities of plane wave electronic structure calculations, speedups of up to 160 and speeds of up to 130 Gflops were obtained
on 256 processors.

0 2003 Elsevier B.V. All rights reserved.

1. Introduction imbalance does not become visible in certain bench-
marks consisting for example of dense linear algebra
applications where the number of numerical opera-
tions is much larger than the number of data accessed
from memory or transfered among the different nodes.
Many high quality algorithm such as multigrid meth-
ods or fast transformations are however characterized
by a number of operations that is proportional to the
number of data items or increasing only slightly faster
than this numberX log(~N) for instance forN data
items). Then, necessarily, both types of imbalance will
hamper the performance of such algorithms.

A standard low complexity algorithm is the Fast
Fourier transformation [5]. A single one-dimensional
FFT requires asymptotically®log,(N) operations if

* Corresponding author. a standard radix two approach is adopted. A three-di-

E-mail address: stefan.goedecker@unibas.ch (S. Goedecker). mensional FFT of a data set consisting 8f data

While the peak speed of computers is increasing
rapidly, it becomes also increasingly difficult to obtain
a significant fraction of this peak speed in real appli-
cations [2]. This is due to an imbalance of the vari-
ous components of modern computers. A well known
imbalance is the discrepancy between the high proces-
sor speed and the slow memory access times. An-
other imbalance found on the latest generation of par-
allel computers is that the bisectional bandwidth is
too low compared to the processing power of a sin-
gle node consisting of several processors. Such an
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requires 1%73log,(N) operations. Performing a sin-  Fourier space indices. In this wayl, i2,i3 denotes
gle 1-dim FFT results in a highly non-local memory the initial real space data set and, 712,73 the
access pattern. By doing multiple 1-dim FFT's one transformed Fourier space data set. The physical
can obtain stride one data access and consequently alimensions1,i2,i3 and/1, 12, I3 can be split into
much higher performance [7]. Multiple 1-dim FFT's  partial dimensionsj1, jpl, j2, jp2, j3, jp3, and
can then be used as the building block for 3-dim J1, Jpl, J2, Jp2, J3, Jp3. The second part of each
FFTs. Strategies adapted to various computer archi- index pair runs from 1 to the number of nodexles
tectures, such as vector machines, RISC type worksta-and the first from 1 to the physical dimension divided
tions and single processor node massively parallel ma- by the number of nodes. To simplify things, we will
chines were discussed in Ref. [2], strategies for clus- assume that the dimension of the FFT is a multiple
ters of vector computers in Ref. [1]. Obtaining high of the number of processors. In this case we have for
performance on massively parallel machines is diffi- instance,j1=1,...,n1/nodes, jpl=1,...,nodes.
cult since the total amount of data to be send around The actual programs allows for physical dimensions
is N3 whereas the total number of operations is only that are different from the logical dimensions and it
slightly larger namely of the order a3 log,(N). Rel- is thus not necessary that the dimension of the FFT
atively simple solutions such as the one presented inbe a multiple of the number of processors. If an
Ref. [2] that were efficient on a well balanced ma- index that runs from 1 tamodes is really distributed
chines such as a CRAY T3E are unfortunately not ef- among the nodes it is put into brackets. In this way
ficient on most massively parallel machines composed ;1. ;2, j3, (jp3) denotes the initial real space data set
of multiprocessor nodes. It has already been recog- distributed along the last dimension among the nodes.
nized that overlapping the communication and com- |f, for example,i3 = 1, 64, and we are using 4 nodes,
putation part can speedup parallel FFT’s [3]. Such an then j3 =1, 16, jp3 = 1, 4, which means that each
overlapping strategy has been implemented for a sin- node holds 16:y-planes in its memory. Analogously
gle 2-dim FFT [4]. 11,72, (Jp2), 13 denotes the Fourier space data set
The programming paradigm proposed by the com- distributed along the second, i,edimension.
puter vendors for such machines is a combination of | the context of plane wave electronic structure
MPI[8] and OpenMP [9], where OpenMPis to be used ca|culations the Fourier space data set is smaller by a
to coordinate the work of the various processors on a factor of 8 compared to the real space data set [6] due
single node and MPI to coordinate the work among o aliasing. The upper half of the frequency spectrum
different nodes connected through a high-speed net-js giscarded after the transformation along ihey-
work. The original idea was to use OpenMP for a anq-axis, reducing the data set by a factor of 2 in
fine grained parallelism on the node and MPI for a g5ch step.
coarse grained parallelism among the nodes. Unfor- | the following the organization of the algorithm
tunately the current OpenMP implementations have yth respect to the different nodes will be described.
not lived up to the expectations of a truly fine grained Tpig part is based on MPI and is similar to the
parallelism. For really high performance, OpenMP at 555r0ach adopted in the CPMD electronic structure
present also requires coarse grained parallelism. Con-.44e [6]. For the moment we will assume that one
sequently OpenMP is frequently not & supplement no4e has only one processor. The OpenMP part that

to MPI but rather a competitor. As will be shown  concerms the fact that one node consists of several
the standard MPI/OpenMP approach also fails for 3- processors will be introduced later.

dim FFT's. We start with the initial real space data set distrib-
uted along the dimension on th@odes nodes.
2. Thebasc a]gO”thm Input: |1’|2,]3,0p3)

The notation of Ref. [2] will be taken over, i.e. whereil=1,71,i2=1,n2, jpl=1, nproc, nodes=
small cap indices refer to untransformed real space 1, n3/nodes. In order to obtain stride 1 in the inner
indices and capital indices refer to Fourier transformed loop of our multiple 1-dim FFT, we first transform
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along the second dimension to obtain
multiple 1-dim FFT: i1, 12,3, (jp3)

Since the upper half of the high frequency components
is removed in electronic structure calculations we re-
move this part in the subsequent single processor rota-
tion. Depending on the convention the high frequency
part can either be located in the middle or in the cor-
ners of the data set. In any case |12 has then onf2n2
elements

Rotation and removal: 12,i1, 3, (jp3)

The same steps are repeated to transform along th
x-axis:

multiple 1-dim FFT: 12,11,j3, (jp3)

Rotation and removal: 11, 12, j3, (jp3)

The previous two transformations along the and
y-axis involved always—y-planes that were available
on a single processor. For the transformation along the
z-axis data distributed among several processors are
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and to work then with Fourier space data that have
this format and are consequently distributed among the
nodes along the-axis.

To transform from Fourier space back to real space
all the steps just described are run backwards

This approach has the following advantages. It
requires only 1 MPI_ALLTOALL compared with 2
for a optimized general FFT [2]. As a consequence the
number of single node copy operations is also reduced.
The overhead of the parallel version compared to the
serial version is therefore less than 20%. The amount
of data moved around by MPI_ALLTOALL is reduced
by a factor of four compared to a general FFT, since
the MPI_ALLTOALL routine is only invoked at the
last step (alongz-direction) where the data set is
already shrunk by a factor of 4 (dimension/21*
n2/2 * n3) due to the removal of the high frequencies.

3. Timing results

The timing results presented in this section were

needed and hence MPI calls. The previous data set canobtained on the Hewlett Packard Compagq AlphaServer

equivalently be written as

Previous data set reformatted: 11, J2, Jp2,j3, (jp3)

We now switch indices by local (single processor)
copying

Copy: 11,J2,j3,3p2, (jp3)

The next step switches the last two indices by invoking
the MPI ALLTOALL routine

MPI_ALLTOALL: 11,J2,3,jp3, (Jp2)
The result can be reformatted:

Previous data set reformatted: 11, J2,i3, (Jp2)

Now all data for a single FFT along theaxis are on
one processor and we transform to obtain

FFT:11,32,13, (Jp2)

We could now bring this output data set into the
input format form 71,12, J3, Jp3, but this would
require another MPI_ALLTOALL and another copy.
It is preferable instead just to reorder locally to get

Copy: 11,13, 32, (Ip2)

SC ES45 massively parallel computer, clocked at
1 GHz. The dimension of the FFT was £28 Fourier
space and 256n real space. The timing measures the
following sequence of operations. A Fourier transfor-
mation of the wavefunction from Fourier space into
real space, a multiplication of the wavefunction in real
space with the potential and a back-transformation of
the wavefunction into Fourier space. This sequence
of operations was applied to 64 wavefunctions unless
specified differently, but the reported timing is the av-
erage time for one single sequence. In spite of the av-
eraging considerable fluctuations are however present
in the measurements.

Table 1 shows the timing results for the MPI only
implementation. The speedup on a single node is
rather poor on this machin@.91/0.869= 3.35) and
is nearly equal to the speedup if the 4 processors
are distributed among 4 different nodes. The single
node speedup that was also measured on an older
Compaq SC232 and surprisingly we obtained a much
better speedup of 3.9. The striking feature of the
result is however the following. If one uses more
than one node one cannot substantially accelerate the
computation by using 4 processes per node instead
of using 2 or even only one. In other words, for
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Table 1 Table 2

Timing in sec of the MPI version. Horizontally the number of  Timing in sec of the OpenMP version on a single node of the
used processors per node varies (the maximum being 4), vertically Hewlett Packard Compaq AlphaServer SC ES45 as a function of the
the number of nodes varies. The number of processors is thus the number of OpenMP threads. The speedup is given in parentheses
product of the entries in the top line and leftmost column

Numb. threads 1 2 4
1 2 4 Time 289 150 (1.9) 0.90(3.2)

1 291 157(1.85 0.87(3.3)

2 163(1.8) 0.95(3.1) 0.60 (4.9)

g g'gi 222 8‘22 g'g; 8'22 g;’;) is reduced by a factor of 16 since the number of MPI
16 025 (117) 0.16(17.9) 013(229) processes is reduced by a factor of 4. However the to-
32 013(227) 0.086(33.7) 0.046(63.8) tal amount of data to be sent remains the same. Since
64 0066 (43.8) 0.046(63.8) for the case of the FFT bandwidth rather than latency

128 0040(720) is the limiting factor, this approach offers no advan-

tage over the pure MPI approach. This was confirmed

more than 4 processes one obtains a faster executiorPy our timings, that were identical to within the fluctu-
time if one assigns only one MPI process per node ations to the timings presented in Table 1. In addition
instead of clustering the same number of processes onthis approach can not overcome the fundamental com-
the smallest possible number of nodes (i.e. having 4 Munication bottleneck. During the communication
processes per node). This surprising feature is dueStep performed by one thread all the other threads idle.
to the behavior of MPI_ALLTOALL routine. For its If one would just like to do a single FFT as fast
efficiency the bisectional bandwidth counts [2] and @s possible on a parallel machine of this type the con-
for a constant number of processes this bisectional clusion is clear. Grasp the largest possible number of
band width is best if the processes are distributed nodes that can be used to do the FFT (i.e. 128 for a
among the largest possible number of nodes. Roughly 128 FFT) and use then the pure MPI implementation
speaking, if 4 processes are running per node they canWwith one process per node. In practice two things are
not send their data fast enough through the single port different. First one needs to do multiple FFT’s, second
to the network that is available on each node. The of allitis economically wasteful not to use the major-
highest speed obtained in this series of measures onity of the processors on each node. Both requirements
128 processors was 52 Gflops. can be reconciled as will be shown in the following.
Table 2 shows the timing results for a pure OpenMP From the previous discussion it is clear that the
parallelization. The number of processes per node is in Most precious resource on a machine where each node
this case limited by the number of processors per node consists of a multiprocessor is the bandwidth among
which is 4 for the Compaq SC ES45 parallel computer the nodes. Therefore we should strive to keep the
which we are considering. For comparison we have network busy all the time. This is not the case in the
however in Table 3 also included the results on a sin- two previous implementations. Phases of computation
gle Hewlett Packard EV7 node, where one can go up during which the network is idle are alternating with
to 16 processors. The OpenMP parallelization is rather communication phases. The situation is similar to the
straightforward. The entire serial FFT part is cache traffic problems in a big city. If everybody starts to
blocked [2] for optimal efficiency. This outer cache work at the same time in the morning there will be
blocking loop can easily be parallelized with OpenMP a traffic collapse. By staggering the beginning of the
resulting in a fairly coarse grained parallelism. Never- working hours a larger amount of rush hour traffic
theless the OpenMP speedup of 3.2 is slightly worse can be handled. Applying this simple idea to FFT’s
than the MPI speedup on a single node. means the following. We subdivide all the processes
We have implemented for this FFT an traditional on our nodes into 4 groups. The first group contains
MPI/OpenMP approach where each MPI process con- the threads number 0 on all the nodes, the second
sists of 4 OpenMP threads. Such an approach has thegroup all the threads number 1 and so on. Group O
advantage that the total number of messages that haves the first to start the calculation. Once it arrives at
to be send around during the MPI_ALLTOALL call the communication stage the second group starts the
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Table 3
Timing in sec of the OpenMP version on the Compaq EV7 as a function of the number of OpenMP
threads. The speedup is given in parentheses

Num. threads 1 2 4 8 16
Time 274 148(1.85 0.84 (3.3) 0.50(5.5) 0.26 (10.4)
croupo | I
GROUP | [N ] ]
GROUP2 N I
GROUP3 N ]

croup o | 111 e I

GROUP 1 (il _______| Ui |
GROUP2 L[l _____| (|
GROUP3 ([l ____| I — —  ———

Fig. 1. lllustration of the computation phases (black) and the communication phases (hatched) of the 4 task groups. Time is progressing fro the
left to right. The requirement for the alignment of the communication stages is that they are not allowed to overlap. In the scenario shown in
the lower part of the Figure this requirement results in idle time for the processes.

calculation and hopefully the first group has finished Table 4

the communication stage once the second arrives atTiming in sec of the non-conventional OpenMP/MPI implementa-

this stage. The third and fourth group start with tion for multiple FFTs. Horizontally the number of threads (which

additional aela s the calculation and in the ideal case equals the number of processors) per node varies (the maximum be-
. Y > ing 4), vertically the number of nodes varies

the communication stages of these 4 groups are not

. . . e S 1 2 4
in conflict. The idea is illustrated in Fig. 1. In the
upper part we assume that the communication time is ; igg(l 8) Ol;i gg 8'23 Egg
less than a quarter of the computation time. In this , 088(3.3) 0.46 (6.3) 0.25(119)
case the throughput will be exactly 4 times larger 8 0.47(6.3) 0.25(12.0) 0.14(20.3)
compared to the case where we use only one process 16 024123 0.13(229) 0.081(36.4)
per node. This means that if we have a large enough 32 013(226) 0.075(38.9) 0.050(58.4)
ber of multiple FFT’s we can do 4 times as man Q067(437) 0.037(79.0) 0032(918)
num p Y 128 0036(812) 0.019(158 0.018(163

FFT’s with the same number of nodes. The case where
the communication part is more than a quarter of the
computation part is illustrated in the lower part of The largest performance is obtained on 128 nodes
Fig. 1. In this case the throughput is increased by less independently of whether one uses 2 or 4 processors
than a factor of 4, but nevertheless the throughput is per node. The speedup at the peak performance is
still increased. 160 and the speed 130 Gflops which is more than
The results of this approach are shown in Table 4. double of the speed that was obtained in the pure
Adding more processes per node gives now a better MPI approach. The 4 groups were defined as OpenMP
speedup for a small number of processors. For largerthreads because in this way it is easiest to classify
configurations going from 2 to 4 threads per node the processes into threads belonging to one node.
does again not help very much since in this case the The same goal could however be achieved by using
communication time is roughly half of the total time. MPI task groups. Let us point out that this way to
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Table 5

Timings in sec of the OpenMP/MPI approach as a function of
the number of multiple FFT’s allowing for 4 threads per node.
Horizontally the number of multiple FFT varies, vertically the
number of nodes

4 8 16 32 64

1 0.86 0388 087 088 088

2 0.52 053 049 046 045

4 0.30 030 027 025 025

8 0.18 017 016 015 015
16 0096 Q089 0089 Q083 0081
32 Q077 Q066 Q055 Q048 Q050
64 0061 Q049 0043 Q036 0031
128 Q037 Q024 Q021 Q018 Q018

use OpenMP is highly non-standard. The OpenMP
parallelization over the different multiple FFT's is
logically on top of the single FFT MPI-parallelization.
Since the calculation of the different 3-dim FFT’s
are completely decoupled very few of the OpenMP
features are needed.

Evidently this non-conventional OpenMP/MPI ap-
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the wave function. This part consists essentially of a
three-dimensional FFT. By exploiting other sources of
parallelism, such as the parallelism over the different
k points, it should be possible to obtain performances
of more than a Teraflop in electronic structure calcula-
tions on the largest computers available today.
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