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INTRODUCTION

Computer simulation has become a standard tool in almost all areas of science,
engineering and technology, and its pervasive importance was one of the clearest themes
to have emerged from the recent U.K. Technology Foresight Exercise. The Foresight
Steering Group Report emphasised that the impressive recent advances in our under-
standing of complex systems are largely attributable to the use of computer simulation,
and identified the field as a main priority for the future.

Although computer simulation is used in many different contexts, the underlying
questions are often surprisingly similar. What happens when many simple objects
come together and interact? How does the complex behaviour of the whole emerge
from the simple laws obeyed by its parts? The constituent objects may range from the
electrons and nuclei making up a crystal of silicon to the cables and girders holding
up the Millennium Dome, but the common aim is to predict the complex large scale
behaviour from the simpler small scale behaviour. In essence, computers are used to
build bridges between different length scales.

Figure 1 shows a wide selection of different areas of physics, chemistry and engineer-
ing linked by arrows corresponding to changes of length scale. Computer simulations
are already being used to help climb most of the arrows, and a large part of the work
being discussed at this conference fits somewhere on the diagram. At the top level of
the tree, the technological and economic importance of computer simulation is large
and growing rapidly. Aircraft, cars, and bridges are already designed using comput-
ers, and new drugs and materials soon will be. Our work, being at the bottom of the
tree, may appear far from the wealth creating activities at the top, but it provides the
scientific understanding needed to underpin progress at higher levels.

To understand why work at the bottom of the tree is interesting and important,
think about the problems facing someone higher up. Imagine, for example, that you're
a materials scientist trying to use computer simulations to assess the effects of different
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Figure 1. The simulation tree

manufacturing processes on the properties of steel. Since the mechanical behaviour of
steel is governed by the dislocations, impurities, grain boundaries, and other defects
introduced during manufacture, your job is to model a complicated system of inter-
acting defects. Your starting point is a thorough quantitative understanding of the
comparatively simple properties of single defects and interacting pairs of defects, but
where is this understanding going to come from? Some of the information you need
can probably be measured, but experiments are difficult, expensive and limited. The
rest can only be obtained from the results of simulations one level lower on the tree.
You can’t begin to model steel without first modelling its constituent defects.

Almost everywhere you look on the tree, some of the data required for simulations
at one level can only be obtained from the results of simulations on the level below.
The descent continues right down to the quantum mechanical atomic/molecular level,
where the many-electron Schrodinger equation at last provides a concise and accurate
universal law of nature. There are quantum field theoretical levels below it, of course,
but the Schrodinger equation requires no input from these and is accurate enough to
explain almost everything higher up the tree. Since the quantum mechanical length
scale at the bottom of Figure 1 is the largest at which we can write down a reliable
“grand unified theory”, it serves as a natural root for the tree above it.

The “Consortium for Computational Quantum Many-Body Theory” was one of the
most sharply focused of the consortia set up under the High Performance Computing
Initiative (HPCI). Our goal is the development of a deeper conceptual understanding of
the role of quantum mechanics in determining the electronic structure and properties of
real materials. In pursuit of this goal, we're developing accurate and reliable methods
for climbing from the lowest box in Figure 1 to the levels above. Our quantum me-
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chanical calculations start from “first principles” and require only the atomic numbers
of the atoms involved as input; if they live up to expectations, they should provide a
firm base on which the higher levels of the simulation tree can rest.

Although the methods we use are very different, our goals are strikingly similar
to those of the larger UKCP Consortium. In the longer term, we believe that the
many-electron approach we have adopted! will supersede the one-electron approach?
they favour, but this is a matter of conjecture of course. The good news is that both
our Consortium and the UKCP Consortium are world leaders in their fields, and that
the United Kingdom is well placed to seize the great opportunities offered by first
principles materials simulation over the next twenty years. Within that time scale,
we are confident that quantum mechanical simulations will be used to design drugs,
catalysts, chemical syntheses, advanced materials, and electronic devices.

THE CHALLENGE

Our “grand unified theory”, the many-electron Schrodinger equation, is generally
believed capable of predicting and describing almost everything experienced in everyday
life. It doesn’t matter whether you're interested in the biochemical reactions taking
place in the human body, the flow of electrons through a transistor, or the strength of
steel — they’re all in there somewhere.

Given its enormous multitude of complicated ramifications, the equation itself is
surprisingly simple,

U(ry,ry, ..., ry) = EV(ry,ro, ... ,ry)

It’s a linear second-order complex partial differential equation of a well-known type, the
only significant computational problem being that the sums over ¢ and j include terms
for every electron in the system. An object weighing a gram or two contains something
like 10?3 electrons, so the many-electron Schrodinger equation is a partial differential
equation in roughly 10?3 variables. Most scientific and engineering problems involve
partial differential equations in 3 or at most 6 variables, so dealing with 10?3 is quite a
challenge.

The traditional response to this challenge has been to stand back in horror and
start approximating. Instead of considering all the electrons together, the idea has been
to look at the electrons one by one, replacing the complicated fluctuating forces due
to the others by an average force known as a mean field. This trick reduces the 10%
dimensional many-electron Schrodinger equation to a much simpler three-dimensional
equation for each electron. The mean field depends on the electron density, which
isn’t known until the one-electron equation has been solved to find all the one-electron
quantum states, so it’s necessary to use some sort of iterative procedure to home in on
a consistent solution.

The mean-field theory most often used in solids is density functional theory.? Al-
though exact in principle, density functional theory involves an unknown quantity called
the exchange-correlation energy functional which has to be approximated in practice.
Several rival approximations are in widespread use, but the simplest and best known is
the local density approximation (LDA). The LDA and its alternatives work surprisingly
well in many cases, and density functional calculations are already being used to inves-
tigate questions of genuine industrial and economic importance. This is the province
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of the UKCP Consortium, the members of which apply density functional theory to
a wide range of topics in condensed matter physics, materials science, geophysics and
biochemistry. Unfortunately, the LDA is by no means universally accurate or reliable.
When it works, as in simple metals and semiconductors, it seems to work very well
indeed; but when it doesn’t, as in transition metal oxides, high temperature supercon-
ductors, and hydrogen-bonded materials such as water, there isn’t much one can do.
There’s no simple systematic way to improve the standard density functional approach
and one is forced to go back to the full many-electron Schrédinger equation instead.

QUANTUM MONTE CARLO

The main approaches used to solve the many-electron Schrodinger equation in
real solids are quantum Monte Carlo' (QMC) and the GW method.> The two are
complementary — QMC simulations tell you about ground state properties while the
GW method gives information about excitations — and we use both. In this article
we’'ll concentrate on our QMC work since it’s slightly easier to explain and particu-
larly straightforward to implement on massively parallel computers. The generic term
“quantum Monte Carlo” covers several different methods, but the ones we use are called
variational QMC and diffusion QMC.

Variational QMC

According to quantum mechanics, the probability that a measurement of the po-
sitions of all N electrons in a solid finds them at ry, ry, ..., ry is proportional to
|U(ry,T,...,ty)[%, where ¥(ry,Ty,...,ry) is the many-electron wavefunction. The
idea behind variational QMC is to use a computer to generate sets of random positions
distributed in exactly the same way as the results of this idealised measurement, and
to average the outcomes of many such computer experiments to obtain quantum me-
chanical expectation values. Given the form of the many-electron wavefunction one can
generate the required samples using the well-known Metropolis algorithm, but the exact
many-electron wavefunction is an unknown function of an enormously large number of
variables and has to be approximated.

The first approximation is to replace the macroscopic piece of solid containing
roughly 10? electrons by a small model system containing no more than a few thousand.
This sounds drastic, but in fact it works very well, especially when we apply periodic
boundary conditions (which means that an electron leaving one face of the model
system immediately re-enters through the opposite face) to get rid of any surfaces. The
replacement of an effectively infinite solid by a small model system subject to periodic
boundary conditions is still an approximation, of course, and the associated finite-size
errors caused us significant problems at the beginning. Luckily, however, our attempts
to understand these errors have been very successful* and we have been able to reduce
them to the point that they can safely be ignored for most purposes. We consider
this an important advance and expect the techniques we have developed to become
standard practice in the field.

The second approximation is more problematic and harder to improve. Since we
don’t know the exact many-electron wavefunction (even for our small model system)
we have to guess it. At first glance this looks like a hopeless task, but a surprisingly
large fraction of those few quantum many-body problems that have ever been “solved”
have in fact been solved by guessing the wavefunction (think of the BCS theory of
superconductivity and Laughlin’s theory of the fractional quantum Hall effect). Most
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of our calculations are done using trial functions of the Slater-Jastrow type,

Uy =D'Dexp |— ZU(I}‘, rj) + Z x(r)|

i>7

where D' and D' are Slater determinants of spin-up and spin-down single-particle or-
bitals obtained from Hartree-Fock or LDA calculations, the function u(r;, r;) correlates
the motion of pairs of electrons, and x(r;) is a one-body function as introduced by
Fahy.5 The Slater determinants build in the antisymmetry required by the Pauli prin-
ciple, and the u and y functions are adjusted to minimise the total energy (or more
precisely® the variance of the total energy) in accordance with the variational principle.

This simple trial wavefunction, first applied to real solids at the end of the eighties,®
has proved astonishingly accurate for the weakly correlated solids studyied so far. Fol-
lowing careful optimisation of the u and x functions, total and cohesive energies are
accurate to within 0.2eV per atom, approximately five times better than the best LDA
calculations.” The full range of solids for which this trial wavefunction is accurate is
still not known, but so far it has exceeded all reasonable expectations.

Diffusion QMC

The major limitation of the variational QMC method is obvious: what happens
when the assumed trial wavefunction isn’t accurate enough? The direct approach is to
add more variational parameters and resort to brute force optimisation, but this limits
one to an assumed functional form which may not be adequate, particularly in strongly
correlated systems where the quantum state is markedly different from the Fermi liquid
state found in weakly correlated solids.

An alternative and much better approach is diffusion QMC, which is based on the
imaginary-time Schrodinger equation,

1, OV(R, )
_Z i — 7\
( SVh + V(R)) (R,7) -
where we have adopted a very condensed notation in which R = (ry,rs,...,ry) is a

3N-dimensional vector containing all the electron positions, V% is shorthand for }°; V2,
and V(R) is the sum of all the potential energy terms appearing in the ordinary many-
electron Schrédinger equation. The imaginary-time Schrodinger equation reduces to
the usual time-dependent Schrodinger equation when 7 is replaced by the imaginary
variable ¢t, but we will be interested only in real 7 from now on.

It’s straightforward to show that as long as the starting state, U(R,7 = 0), isn’t
orthogonal to the ground state energy eigenfunction, the solution of the imaginary-time
Schrodinger equation becomes proportional to the ground state in the limit as 7 — oo.
The imaginary-time development is just a mathematical trick used to convert an arbi-
trary starting state into the ground state without assuming any particular functional
form.

The clever part is that there’s a simple algorithm that can be used to carry out
the imaginary-time development in systems containing hundreds or thousands of elec-
trons. If the V(R) term is ignored, the imaginary-time Schrédinger equation is just a
diffusion equation describing a population of “walkers” diffusing in a 3/N-dimensional
“configuration space”; if the V% term is ignored, it’s just a rate equation analogous
to the equation describing radioactive decay. Putting these two things together, it
can be seen that the imaginary-time Schrodinger equation describes walkers diffusing
in 3/N-dimensional space while dying out or multiplying at a rate determined by the
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value of V/(R). This simple physical picture leads directly to a simulation method in
which a collection of walkers multiply and reproduce as they diffuse randomly around
in a 3N-dimensional vector space. After a long time 7, the density of diffusing walkers
becomes proportional to the ground state wavefunction Wy(R) (not |¥o(R)|? as you
might expect; it’s Uo(R) that plays the role of a probability density here), and one can
start accumulating ground state expectation values as in variational QMC.

There’s one major problem with the algorithm just described. The diffusion
QMC method finds the overall ground state of the system, and for the many-electron
Schrodinger equation this happens to be a totally symmetric function of the particle
coordinates. Electrons are fermions, however, and according to the Pauli principle
many-fermion states have to be totally antisymmetric. The simple diffusion QMC
algorithm gives a many-boson state of no physical interest.

To ensure that the diffusion QMC simulation produces an antisymmetric state
we're forced to make the so-called fixed node approximation, in which we guess the
shapes of the regions of configuration space within which the wavefunction is positive
and negative and solve the imaginary-time Schrodinger equation to find the lowest
energy state consistent with that guess. Fixed-node diffusion QMC is perhaps best
regarded as a variational method in which, instead of assuming a trial form for the whole
wavefunction, we assume only a trial form for the nodal surface (the 3N —1 dimensional
configuration-space surface on which the wavefunction is zero). We use fairly simple
guesses based on mean-field wavefunctions and our experience so far suggests that these
give very good results, accurate to considerably better than 0.1eV per atom.” The fixed-
node approximation is the only significant approximation in our calculations.

COMPUTATIONAL ISSUES

Like most Monte Carlo methods, our QMC calculations are ideally suited to mas-
sively parallel architectures. We simply put one walker (or several walkers) on each
node and run different simulations on each. Some communication between the many
parallel simulations is necessary, but the communications requirements are quite small
and the performance increases linearly with the number of nodes used.

One of the comments we received in response to our first HPCI grant proposal
was that our work was so “embarrassingly parallel” that it wasn’t worth running on
the Cray T3D; it wouldn’t provide enough of a technical challenge! In our view this is
nonsense. Our use of the T3D and T3E has allowed us to do world-beating physics which
would not have been possible on lesser machines or networks of workstations. Yes, our
algorithms are easy to parallelise, but surely this is a strength rather than a weakness?
It means that we can get our programs running quickly and efficiently and concentrate
our attention on the science instead of on its computational implementation. The
T3D and T3E have enabled us to study larger systems and achieve higher accuracies
than any other group in the world, and to complete ambitious scientific projects that
nobody else could have attempted. Our successes have demonstrated the tremendous
potential of the combination of quantum Monte Carlo methods and massively parallel
computation. This, we believe, is the sort of work the T3D and T3E were intended for.

We have, of course, put considerable effort into optimising our codes, and thanks to
the expert help we have received from Edinburgh Parallel Computing Centre (EPCC)
they are now amongst the most efficient on the T3D and T3E. We have found it very
useful to have a named EPCC postdoc (currently Stephen Breuer) assigned to look
after our Consortium, and hope that the EPSRC will provide funds to continue this
system in future.
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SOME EXAMPLE APPLICATIONS

Our consortium has been involved in a wide variety of different projects, leading to
25 publications in refereed international journals, 6 of which were in Physical Review
Letters. Our access to the T3D and T3E has allowed us to establish a position as one
of the world’s two leading groups in our field, and we have recently been invited to
write major review articles in both “Reports on Progress in Physics” and “Advances in
Chemical Physics”. We plan to use these to explain the techniques we have developed in
the hope that this will help to demystify the subject and encourage its further growth.
We can’t possibly cover all our QMC work in this short paper, so we’ve picked four
representative examples.

Total Energy Calculations

Our first few projects were concerned with testing the accuracy and reliability of
QMC calculations of ground state energies.” We used QMC to calculate the cohesive
energies of a number of different solids and compared the results against mean-field
values obtained using density functional theory within the LDA. Typical results are
summarised in Table 1.

Table 1. The Cohesive Energy of Ge Obtained Using Three
Different Methods

Method Used Cohesive Energy (eV/atom)
LDA Calculation 4.59
Diffusion QMC Calculation 3.85
Experiment 3.85

Finite-size errors in QMC simulations are typically a significant fraction of an eV,
so highly accurate calculations such as that in Table 1 rely on the techniques we have
developed for eliminating these errors;* it’s only after the finite-size errors have been
eliminated that the full accuracy of the QMC approach becomes apparent. For weakly
correlated solids like Ge, it’s now clear that diffusion QMC calculations of total energy
differences (and hence interatomic forces) are at least an order of magnitude more
accurate than calculations using any alternative method.

Relativistic Electron Gas

Close to the nuclei of heavy atoms, where the electron density is very high, the
electrons move at a significant fraction of the speed of light and relativistic effects
become important. These are not included in the many-electron Schrodinger equation,
but can be incorporated via perturbation theory. We have been studying the relativistic
effects in various systems to order 1/c? using QMC methods. After a starter project
in which we studied the relativistic effects in various atoms,® we concentrated on the
unpolarised relativistic electron gas. Our results enabled us to check the relativistic
version of the LDA used in density functional calculations of solids and molecules
containing heavy atoms. We found that the contact term is well described by the LDA,
but that the effects of retardation are very poorly described and require a non-local
functional. A short description of this work® appeared in Physical Review Letters, and
we are currently writing up our new results on the polarised relativistic homogeneous
electron gas.



Silicon Quasiparticle Bandstructure

This project demonstrated the power of diffusion QMC by calculating the band
structure of silicon, obtaining excellent agreement with experiment.'® Although similar
calculations had been done in the past,'! ours were much more complete and precise
than their predecessors and were the first to demonstrate the very high accuracy of
the QMC approach. The excited state issues that can be addressed using QMC are
somewhat limited, but in those cases where QMC can be applied it works very well
and gives a good account of the many-body effects missed by mean-field methods.
Unlike perturbative methods for studying excited states, QMC can also be used to
study strongly correlated systems, and hence provides a unified framework for studying
ground states and excitations throughout the periodic table. No other approach shows
such promise.

Another result of this work was a better understanding of the theory underlying
QMC calculations of excitation energies. A widely believed “folk theorem” states that
the fixed-node diffusion QMC energy is always greater than or equal to the energy of
the ground state eigenfunction with the same symmetry as the trial state used to define
the nodal surface. In fact, we have recently proved that this theorem is correct only
when the relevant ground state eigenfunction is non-degenerate, and have devised a
simple analytic example to demonstrate our point.

Exact Density Functional Theory

In order to understand the physics behind mean-field approximations such as the
LDA, it helps to think about one particular electron (let’s call it the labelled electron)
moving through the sea of nuclei and other electrons making up a solid. The labelled
electron is attracted to the positively charged nuclei, which are so massive that they
can be treated as immobile, and repelled by the other electrons, which are negatively
charged.

As a rough approximation, it seems sensible to replace the fluctuating forces due
to the other electrons by the static electrical (Coulomb) force due to the average elec-
tronic charge density. This simple mean-field approximation, known as the Hartree
approximation, helps keep the labelled electron away from regions where there are lots
of other electrons on average, which is a good start, but misses something important.
As the labelled electron moves around, the others stay out of its way; you can think
of the labelled electron carrying round a little “exclusion zone”, usually known as the
exchange-correlation (XC) hole, within which other electrons rarely venture. The elec-
tron density near the labelled electron is therefore less than the average density, and
the Hartree approximation doesn’t take this into account. Other mean-field approaches
such as Hartree-Fock theory attempt to build in the effects of the XC hole in an ap-
proximate way, but these approximations aren’t particularly accurate.

Density functional theory is based on a remarkable theorem, first proved almost
35 years ago,'? which states that it is in principle possible to devise an exact mean-
field theory. In other words, the mean field can be chosen in such a way that the
energies and electron densities obtained by solving the one-electron equations come out
exactly right. There’s even a prescription for constructing the exact mean field given
the detailed shape of the XC hole.'® Practical applications of density functional theory
have had to rely on approximations such as the LDA only because no available method
has been able to calculate the shapes of XC holes in real materials.

Quantum Monte Carlo methods can calculate accurate XC holes, however, and
Figure 2 shows the result of our calculation of the shape of the hole around a labelled
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Figure 2. The exchange-correlation hole around an electron near the centre of a bond in crystalline
silicon

electron at a particular point in the (110) plane of silicon.!* We’'ve now assembled
enough data to allow us to plot the shape of the XC hole anywhere in a piece of silicon,
and have made a movie to show how the hole changes as the labelled electron moves
around. The ezact mean fields calculated from our XC hole data for silicon and other
systems'® are significantly different from the commonly used approximations, and we
believe that these results will help the development of better mean-field methods in the
future.

CONCLUSIONS

This article was intended to emphasise the importance of first principles materials
simulation and to explain where QMC fits in. We hope we have convinced you that
the impact of quantum mechanical materials simulation will continue to grow in the
future, and that QMC will be the method of choice when high accuracy is required.

Mean-field methods such as density functional theory within the LDA are fine
when the necessary accuracy is a few tenths of an eV per atom, but many problems
require much higher accuracy than this. Chemical reaction rates, for example, are
sensitive to energy differences of order kg7 ~ 0.025 eV at room temperature, and many
biochemical processes require even higher accuracy. There is no doubt that quantum
mechanical materials simulation promises a technical revolution, with computers used
to design drugs, chemical syntheses, and smart materials, but this will not happen until
accuracies of order 0.01 eV per atom can be attained routinely. No method applicable
to solids or large molecules can yet provide such precision, but quantum Monte Carlo
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is the closest and (in our opinion) the most likely to succeed.

Fortunately for us, it seems that the EPSRC concurs with this opinion. Computa-

tional quantum many-body theory, including both QMC calculations and methods for
excited states such as the GW self-energy calculations that form the other main part
of our work, were highlighted in the EPSRC “Review of Condensed Matter Physics”
under “Future Growth Areas/Priorities”, and were featured in the “Analysis of Com-
munity Questionnaire” as a “likely major growth area in CMP research over the next 5
years”. The United Kingdom is among the world leaders in most areas of first principles
materials simulation, and with the continuing support of the EPSRC there is no reason
why we should not remain at the forefront.
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