New insights into the origin of visible light photocatalytic activity of nitrogen doped and oxygen deficient anatase TiO₂

Zheshuai Lin

(TCM group)

Introduction

- TiO₂ is a non-toxic, relatively inexpensive and very promising photocatalyst for environmental applications.
- The bandgap of TiO₂ is large (3.0-3.2 eV) its photocatalytic efficiency under visible light is very low.
- Many attempts have been made to improve its performance in visible light region:
- > Transition metal doping
- Surface modifications.
 - Non-metallic elements doping

Nitrogen doping in anatase TiO₂

Two mechansims were proposed to account for visible light activity of N-doped TiO₂:

- Oxygen vacancies introduced in TiO₂ when prepare samples. Nitrogen atoms just act as a blocker for electron and hole recombination.
- > Nitrogen atoms doped into substitutional sites in TiO₂.

The experimental preparation methods can introduce both doped nitrogen and oxygen vacancies \rightarrow need theoretical approach.

Calculation methods

Modelling: TiO_{2-x}N_x or TiO_{2-x}: replace or remove O in Supercell — 24, 48, and 96 atoms \rightarrow x=0.125, 0.062, and 0.031

- * CASTEP
- > Spin-polarized GGA
- > Ultrasoft pseudopotential
- > Energy cutoff of Plane-wave: 500 eV
- > PBE XC functional

Geometry optimization → electronic band structures → Optical absorption properties

The imaginary part of the dielectric constant:

$$\varepsilon_{2}(\hbar\omega) = \frac{2e^{2}\pi}{\Omega\varepsilon_{0}} \sum_{k,v,c} \left| \left\langle \psi_{k}^{c} \left| \hat{u} \cdot r \right| \psi_{k}^{v} \right\rangle \right|^{2} \delta \left(E_{k}^{c} - E_{k}^{c} - \hbar\omega \right) \quad \text{(Scissors operator)}$$

Stoichiometric TiO₂

* Optimized geometry:

	This work	Experimental ^a
a (Å)	3.7845	3.782
c (Å)	9.7153	9.502
и ^ь	0.2059	0.208

^a J. K. Burdett, *JACS*, Vol. 109, 3639 ^b $u=d_{ap}/c$, d_{ap} is the apical Ti-O bond length.

Mulliken analysis: Ti:+1.33 O:-0.66

Electronic band structure along high symmetry directions in stoichiometric TiO_2 crystal (indirect gap 2.14 eV).

Nitrogen doped anatase TiO₂

Partial density of states plots calculated for different levels of the N doping in TiO₂ crystal.

Mulliken analysis: N -0.58 --> N acts as a deep electron trap.

PDOS for spin-up (s^{\uparrow}) and spin-down (s^{\downarrow}) electrons in nitrogen atom (x=0.062).

In high concentration (>20%), the N 2p states mix with the O 2p states the transfer of photoexcited carriers to reactive sites at the catalyst surface within their lifetime.

High doping might cause some problems : > Form TiN;

> Introduce significant number of defects.

Optical absorption spectra of N-doped TiO₂ in visible light region

The optical absorption spectra calculated for various N concentrations in polycrystalline TiO₂. (A) undoped TiO₂, (B) 12.5% nitrogen doped, (C) 6.2% nitrogen doped, (D) 3.1% nitrogen doped.

Made by Chemistry department of Cambridge

Oxygen deficient TiO₂

Mulliken analysis: excess electrons were redistributed by the nearest neighbour Ti atoms around the oxygen vacancy site.

The donor states: Calculated: 0.15 ~ 0.30 eV below the conduction band edge. Experimental: 0.75 eV below.

PDOS with the oxygen vacancies concentration in TiO₂ crystal.

Optical absorption spectra of oxygen deficient TiO₂ in visible light region

Optical absorption spectra of polycrystalline TiO₂ with different **O vacancy contents.** (A) updoped **TiO**₂, (B) 12.5 % oxygen vacancies, (C) 6.2 % oxygen vacancies (D) **3.1%** oxygen vacancies.

TiO₂ crystals were heat treated by hydrogen gas. T. Sekiya, J. Phys. Soc. Jpn, Vol. 73, 703

Conclusion

- The electronic band structures of nitrogen doped and oxygen deficient TiO₂ with different levels of doping /vacancies (e.g. 12.5%, 6.2% and 3.1%) were obtained;
- Subsitutionally doped nitrogen introduce localized N 2p acceptor states above the top of the valence bands, while oxygen vacancies result in the donor states below the bottom of conduction bands;
- The calculated optical absorption spectra of both cases are in good agreement with experimental data.
- The visible light absorption of the nitrogen doped and the oxygen deficient TiO_2 are very different; the former mainly absorbs the light from 400 to 500 nm, while the latter mainly absorbs the light above 500 nm.

Acknowledgements

Dr. A. Orlov and Prof. R. Lambert

(Department of Chemistry)

Prof. M. C. Payne

