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Quantum Monte Carlo calculations of the one-body density matrix
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Quantum Monte CarldQMC) techniques are used to calculate the one-body density matrix and excitation
energies for the valence electrons of bulk silicon. The one-body density matrix and energies are obtained from
a Slater-Jastrow wave function with a determinant of local-density approxim@tiafA) orbitals. The QMC
density matrix evaluated in a basis of LDA orbitals is strongly diagonally dominant. The natural orbitals
obtained by diagonalizing the QMC density matrix resemble the LDA orbitals very closely. Replacing the
determinant of LDA orbitals in the wave function by a determinant of natural orbitals makes no significant
difference to the quality of the wave function’s nodal surface, leaving the diffusion Monte Carlo energy
unchanged. The extended Koopmans'’s theorem for correlated wave functions is used to calculate excitation
energies for silicon, which are in reasonable agreement with the available experimental data. A diagonal
approximation to the theorem, evaluated in the basis of LDA orbitals, works quite well for both the quasihole
and quasielectron states. We have found that this approximation has an advantageous scaling with system size,
allowing more efficient studies of larger systerff80163-182@8)05224-3

I. INTRODUCTION ergies using QMC techniques. Excitation energies may be
obtained by analyzing DMC decay curnv&$but this method

The two most common, practical quantum Monte Carlohas not proven very useful due to the large statistical noise.
(QMC) methods for realistic systems are the variationalFurthermore, as the quality of the ground-state trial wave
quantum Monte Carfe? (VWMC) and diffusion quantum function improves, less information about excited states is
Monte Carlé® (DMC) methods. In VMC, expectation values Obtained. A combination of ground- and excited-state wave
are computed with an approximate many-body trial waveunctions must then be used to obtain upper bounds for the
function. In DMC, imaginary time evolution of the many- excitation energies. Direct methods for calculating excitation

body Schidinger equation in principle gives exact resuits, N€rgies have met with more success. Béitad Martin have
although in practice one needs to make the “fixed-node ap(_:alculated an excitation energy in a molecular nitrogen solid

proximation” to account for the antisymmetry of the many- by performing DMC calculations for the ground and excited

electron wave function. In the fixed-node approximation, thestates? Mitas has also reported similar calculations for two

nodes of the propagated wave function are restricted to thoseXCItatlon energies in dlam(_)ﬁd_Recentl)? e L_Jseq_the same

. ) ) . fethod to calculate 27 excitation energies in silicon, obtain-
qf th(.a trial wave functlon._ The accuracy of this appromma-ing very good agreement with experiment for the low-lying
tion is central to DMC simulations of many-electron sys- o, uitation energies, while the energies of the higher-lying

tems. One of the aims of our work is to investigate the ef-gycitations were somewhat too large. In this paper we calcu-

fectiveness of this approximation for extended systems, withyte excitation energies using a different approach. Here we
the long-term goal of obtaining better trial wave functions. ,se the “extended Koopmans's theorert2KT), 1 which

In this paper we calculate the one-body density matrix forgerives from quantum chemistry, and involves the one-body
the valence electrons of silicon within the VMC framework, density matrix. We have applied this theorem within VMC to
and obtain the natural orbitals that diagonalize the densityalculate the excitation energies of silicon at four inequiva-
matrix. These calculations require the whole of the densityent k points within the Brillouin zone. The energies are in
matrix throughout all of the six-dimensional spacer’, not  good agreement with the available experimental data with a
just at a few points in space as has been obtained before. Tevel of agreement similar to direct excitation calculations.
our knowledge, this is the first time that the one-body densitywWe also test the diagonal approximation to the EKT evalu-
matrix and natural orbitals have been obtained for an exated using the LDA orbitals, which was used previously to
tended, inhomogeneous, interacting electron system. Receestimate quasihole energies in sili¢dand NiO* We find
evidence has suggestfetat a determinant of natural orbitals that the approximation performs well in silicon and that it
may give a better nodal surface than a determinant ohas an advantageous scaling with system size. This allows
Hartree-Fock HF) orbitals. Our results show that a determi- more efficient studies of excitations in large systems than are
nant of natural orbitals has a similar quality nodal surface tqossible with existing direct technigues.
a determinant of local-density approximatiitDA) orbitals The layout of this paper is as follows. In Sec. Il we briefly
for bulk silicon. In a separate calculation we find that a de-describe the QMC techniques used in our calculations, in-
terminant of LDA orbitals has a slightly better nodal surfacecluding the Hamiltonian, the trial wave function, and the
than a determinant of HF orbitals. relevance of natural orbitals to QMC calculations. In Sec. llI

There is considerable interest in calculating excitation enwe present and discuss our results for the one-body density
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matrix and the natural orbitals of silicon. In Sec. IV we de- Wr(rg, e ) =D (g, P2 D (P2 5 10T N)
scribe the extended Koopmans'’s theorem and its application N N
to the band structure of silicon.
xexp(_E x(r)—2 uryp |, (@
i=1 i<j
Il. QMC SIMULATIONS OF SILICON where the spin-up and spin-down Slater determinBritand

D! are multiplied by a Jastrow factor that contains a one-
body y function and two-body correlation factar. Our y
function has the full symmetry of the diamond structure and
is expressed as a Fourier series containing six inequivalent,
nonzero, parameters. We used spherically symmetric parallel
and antiparallel spinu functions® which satisfy the
electron-electron cusp conditidisand contain a total of 16
For this study we used an fcc simulation cell, with peri- parameters. The optimized parameter values were obtained
odic boundary conditions, containing 54*Siions and 216 by minimizing the variance of the enerdy.
electrons. The Hamiltonian for our system, within the Born- The spin-up and spin-down Slater determinants were
Oppenheimer approximation, is formed from single-particle orbitals obtained from an LDA
calculation employing the same pseudopotential as in the
QMC calculations. The LDA orbitals were calculated at the

In this section we briefly describe our QMC calculations.
For a more detailed discussion of the methods we refer th
reader to the literaturg®15-17

A. The Hamiltonian

) 1 1 I'-point of the simulation-cell Brillouin zone using a plane-
A=Y — EVinrZ > vg(ridy)+ > > > () wave basis set with an energy cutoff of 15 Ry. Although the
! b v I'-point scheme does not give optimal Brillouin zone
1 sampling?® it does preserve the full symmetry of the system
+ > > BE Vap(dgy,dpg). (1) and allows comparison with a wider number of established
o Fa

results. Thd -point of the simulation-cell Brillouin zone un-
folds to four inequivalenk-points in the primitive Brillouin

The positions of tha\ electrons in the supercell are denotedZONe- These ar€,0,0 (the I' poind, (0,05)2/a (a point
by r; and the ion locations are denoted dhy. The electron- along the A axis, hereafter referred to as thie point),
ion potentialv,, is modeled by a norm-conserving nonlocal (0,3,5)2#/a (a point along the, axis, hereafter referred to
pseudopo_ter_ltié‘f obtained from _atomic _calculations Per- as thes, point), and §,2,%)2x/a (a point along the\ axis,
formed within the LDA to_densﬂy_—functlon_al theory. Th_e hereafter referred to as the-point).

standard method for including the interparticle Coulomb in- 1 s highly desirable to improve the quality of the trial

teractions in periodic systems is to use the Ewald interactiog),ve functions used in QMC calculations. Improvements to
potential. We have found that this interaction gives rise 5| wave functions can be classified into three typés:
significant finite size errors, especially for small S'mUIat'onimprovement of the Jastrow factdii) using a linear combi-
cells. Recently we introduced a formulation of the electron-ayiqn of determinants, ardi ) improvements in the orbitals
electron interaction for simulations using periodic boundarysoming the determinants. In this paper we will investigate a
conditions that eliminates this probléfmhereafter referred possible improvement of tygi ), namely, the use of natural
to as the “cutoff interaction). This interaction satisfies the pitals The question of which single-particle orbitals lead

conditions thati) it gives the correct Hartree energy afid ¢, the hest approximation to the exact many-body wave func-
it has the proper &/form for the interaction of an electron oy s still open. Furthermore, this choice fixes the nodal

with its exchange-correlation holgThe Ewald interaction g tace of the trial wave function and therefore determines

violates conditior(ii).] Here we present results for excitation the accuracy of the fixed-node approximation. LDA and HF
energies calculated with both the Ewald and cutoff interacypitals have been used successfully in a number of

tions, using a wave function that was optimized using theatomic,l6'21molecular?z'zgand solid* QMC calculations, but

cutoff interaction. For consistency one should use the samg; ¢y it has not proved possible to perform a direct optimi-
form of interaction between all the particles, but it turns Out,ation of the single-particle orbitals of an extended system.
that if we apply our new interaction to a system of quantum-p study of first row atoms and molecufé® showed that
mechanical electrons and classical ions then it reduces @ er energies can be obtained in both VMC and DMC us-
using the Ewald interaction for the terms involving the ionsjng 4 trial wave function containing several determinants ob-
while the cutoff interaction applies only to the electron-taineq from a multiconfiguration self-consistent field
electron jnteractions. Note that fche cutoff interaction is fo,r'(MCSCF) calculation. However, a similar study for small
mulated independently of QMC itself and may be used withgjjicon clusters found that trial wave functions containing a
other techniques for periodic systenfs. single determinant of natural orbitals computed within an
MCSCF scheme gave better DMC results than some mul-
tideterminant wave functiorfsThis result strongly suggests
that the natural orbitals result in improved nodal surfaces,
The choice of trial wave function is of critical importance and motivates our calculation of the natural orbitals for bulk
for VMC and DMC calculations. We have used a standardsilicon.
Slater-Jastrow form: An expansion of a wave function in Slater determinants of

B. The trial wave function
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natural orbitals requires a smaller number of terms for a [ll. CALCULATION OF THE DENSITY MATRIX

given accuracy than expansions using other orbftal&Cal- AND NATURAL ORBITALS

culation of the natural orbitals is, however, costly, and less
expensive schemes such as natural pair orBit3lshave _ _
been proposed to improve convergence in quantum chemical 1he one-body density matriX for a normalized wave
calculations. It is not clear that orbitals arising in schemedunction ¢ is defined as

designed to accelerate convergence of configuration interac-

tion (Cl) calculations should give smaller fixed-node errors p(r,r’)=Nf (A TP SO 1 (R ST o) [o [ PEERYe [SVH

in DMC calculations than LDA or HF orbitals. However, as &)
mentioned above, there is some evidence to suggest that

natural orbitals have this property. Natural orbitals have notl© facilitate calculation we expand the density matrix in a
frequently been computed within fermion QMC, although basis of orbitalsp; leading to

VMC and DMC calculations of natural orbitals have been

reported for the ground states o_f the Li, C, and Ne_atBhs. p(r,r'):Z Pij¢i(r)¢?(r')- (4)

To our knowledge, no calculations of natural orbitals for L

realistic extended fermion systems have appeared in the liye refer to the diagonal elemenis as the orbital occupa-
erature to date, although for homogeneous systems the trangsn numbers. For wave functions consisting of a single de-
lational symmetry requires the natural orbitals to be plangerminant, such as HF or LDA wave functions, the density

waves. matrix is idempotent g=p?) and takes the form of a sum
Systematic studies of multideterminant wave functions inover the occupied orbitals, i.e.,

QMC are lacking for solids. It seems reasonable to assume
that multideterminant wave functions will have improved
nodes, and therefore give a better representation of the exact p(r,r)= 2;1 Bi(N) @ (r'), ®)
wave function, but there is little direct evidence to support

this. Multiconfigurational approaches include correlation ef-So that the occupation numbers aréirluding spin degen-
fects, but do so relatively inefficiently—large numbers of €racy for occupied orbitals and 0 for unoccupied orbitals.
terms (configurations are usually required to obtain a sig- e write the matrix elements of the interacting density
nificant proportion of the correlation energy. This form of Malrix pj; as expectation values over the distribution?:
wave function is unattractive for QMC as we require an ac-

A. Density matrix

N/2

. . . r' o, f
curate representation of the wave function that can be rapidly pij :NJ G (r)¢i(r') M
evaluated. Therefore, we obtain the one-body density matrix Yry,....rn)
and hence the_ natural orbitqls from a vMC calculation using X[y, )| 2dr dr - -dry . (6)
a correlated trial wave function, bypassing the need to deter- ] . o
mine them using a multideterminantal calculation. The permutation symmetry allows us to rewrite this in a way

that is efficient for Monte Carlo evaluation. Denoting the
average over the distributiohy|? as (---) 2, the Monte

C. VMC and DMC calculations Carlo expectation value is written as
N !
In VMC we compute the expectation value of the Hamil- B CTTN Svr
. g pecial _ pij=<2 f¢r<rn>¢j<r ) o——dr' ), (D)
tonianH or other operator, with a trial wave functiobi. n=1 /CHN PP yj2

This method gives a rigorous upper bound to the exact h | lated h | h
ground-state energy. The Metropolis algorithm is used tc§°t atN values are accumulated at each step along the VMC

generate electron configuratiofs distributed according to wglk. The. integral oyedr IS perfqrr_ne_d by summing over a
[W-(R)|2, and the energy calculation is performed by aver-g”d of uniform spacing whose origin is chosen randomly for
T ' each electron configuration. The same grid ins used for

aging the local energy'; *HW 1 over this distribution. each term in Eq(7), which further reduces the computa-
In our DMC calculations we use the short-time approxi-tional cost. We tested a series of grid sizes forrthmtegral,
mation for the Green’s function with a time step of 0.015ysing identical configurations for each grid size to obtain a
a.u., which has been shown to give a small time-step error igorrelated sampling estimate of the difference between the
silicon3? Importance sampling is introduced via the trial integrals. We found that a grid containing 125 points in the
wave function? ;. We make the fixed node approximation, simulation cell sampled the integral with sufficient accuracy.
restricting the nodes of the DMC solution to be those of the Provided that the density of points in thé integral is
trial wave function. Approximately 1810° statistically in-  kept constant, the statistical error in the individual elements
dependent electron configurations were used and thef the density matrix for a given number of statistically in-
acceptance/rejection ratio was greater than 99.9%. The comlependent configurations is approximately independent of
putational cost of this method scales with the third power ofsystem size.
the system size. Exact fermion techniques, such as the re- We used a basis set consisting of the lowest energy LDA
lease node QMC and Cl methods, have computational resrbitals at the 2’k points in the primitive Brillouin zone. We
guirements increasing exponentially with the system size antested the effect of varying the number of orbitals in the
are impractical for the system sizes used here. basis. We found that approximately 40 orbitals gepoint
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FIG. 1. Occupation numbergliagonal elements of the density
matrix in the basis of LDA orbitajsplotted against the LDA energy
for eachk point. These are thE point (O), A (¢), = (V), andA
(O) points on theA, 3, and A axes, respectively. The statistical
error bars are approximately equal to the sizes of the symbols for
the conduction-band states and are about 5 times smaller than the
symbols for the valence-band states. 00005 -
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were sufficient, although to retain the symmetry we included
all members of a degeneracy, so that the actual number used
was either 39 or 40 orbitals, depending on kheoint. The
normalization used in E3) requires that

N=Trp ®) FIG. 2. (a) The VMC ong-body density matri>pv_,\,,c(r,r’) and

’ (b) pymc(r,r’)—pipa(r,r’), in the(110 plane passing through the
which provides a practical test for the completeness of th&toms withr fixed at the bond centep is normalized such that
basis set. The total occupation of the matfikrp) was p(r,r)=n(r), the charge density at the bond center. The silicon
215.92), which is within the statistical error of the number atoms and bonds are shown schematically.

of electrons in the system, indicating completeness of the ) . i i i
basis at the level of the statistical accuracy obtained. The maximum difference between the interacting occupation

For a given number of Monte Carlo moves, the best staUmMberp;; and the LDA occupation number was 0.0625

tistics are obtained by accumulating all nonzero matrix eleWhich occurred at thd',5 state at the top of the valence

ments and applying the symmetry afterwards. However, it fand- The magnitude of the largest off-diagonal matrix ele-
computationally very expensive to accumulate all of themMent was 0.014), which is of similar order to the occupa-

and we found that a more efficient procedure was to accylion number of the lowest unoccupied orbitals. The fractional
mulate only the independent nonzero matrix elements. ThEOrS in occupation numbers for orbitals of low occupation
basis set of LDA orbitals are basis functions of the unitaryWere large in comparison to those of high occupation. We
irreducible representations of the symmetry grﬁlﬂo Using fo_ur_ld that 97'6% _of_the fotal occupation of the density ma-
the “orthogonality condition for matrix representation&” trix is contained within the four occupied LDA bands at each

we inferred that elements involving products of orbitals froml;.po'lm’ antlj ?tgh'O% IS obtt{:uned W'éh'n the f.II’SE[ :ﬁn Eg&dé lr:j
inequivalentk points and of differing representations are ' '9- + W€ pot In€ occupation numbers against the an

zero. We ensured that every occurrence of a given represeﬁperg'es' The occupation numbers decrease almost linearly

tation was identical, so that products between functions beWIth increasing LDA energy for both the occupied and un-

; : : ied bands.
longing to different rows were orthogonal. This procedureOCCUp'fa : . N
reduced the total number of independent and nonzero matrix In Fig. 2 we ShOW the density matrp(r,r’) in the (110
elementsyp;; , from 42094 to 582 elements. plane, and the differences between the VMC and LDA ma-

These matrix elements were sampled using approximatel |ceds. Thde, coordinate |st;|xefoat lthe cente.r Ofﬂ? covsltehnt
6.6 10° statistically independent configurations. The corre- ond, and ranges over él ) p ane passing througn the
lation lengths along the VMC walks of both the local energyatom'c positions. The density matrix consists of an asymmet-

and density matrix were found to be essentially the same. r_ic central peak, reduced in Widt.h along the_ bonding dire_c-
tion. A longer-ranged structure is present in areas of high

valence charge density, smaller by approximately one order
of magnitude than the peak.

We found the matrixp;; to be very nearly diagonal, with The VMC value for the peak in the density matrix on the
little coupling between LDA orbitals. Double occupancy bond center at=r’ is 1.7% smaller than the LDA value.
(spin up and downof orbitals is denoted by the value 2.0. The VMC density matrix has a larger magnitude around the

B. Results for the density matrix
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neighboring silicon ions than the LDA density matrix, which D. DMC calculations

consequently has a slightly smaller range. We also examined as well as the LDA and VMC calculations, we performed
the density matrix in interstitial regions, where we foundfixed-node DMC calculations with trial wave functions of
more structure to be present. Again, the LDA and VMC re-the form of Eq.(2), using LDA and natural orbitals to form
sults were very similar, with small differences between thethe determinants. Reoptimization of the Jastrow grfdnc-
two cases arising principally from the differing charge den-tions to improve sampling efficiency in the DMC calculation
sities. was found to be unnecessary. The resulting energies were
To investigate the effect of using a finite size simulation—107.59 eV(LDA), —107.69(1) eV(VMC with LDA or-
cell we compared the LDA density matrix computed for 3 bitals), —107.71(1) eV (VMC with natural orbitals,
X3X3 and 4x4X4 k-point meshes, corresponding to —108.10(1) eV (DMC with LDA orbitals), and
simulation cells containing 54 and 128 atoms, respectively-—108.09(1) eV (DMC with natural orbitals The VMC
We found that the central peak was largely unchanged an@ave function appears to show a very slight improvement
the longer-ranged structure was in qualitative agreement/_\/ith natural orbitals compared with LDA orbitals. However,
The central maximum in the density matrix in Fig. 2 is at theto within statistical accuracy, the DMC energies obtained
pointr=r' and its magnitude is directly proportional to the With LDA and natural orbitals are the same. This indicates
valence charge density at that point, which differed by 4.99¢hat the nodal surfaces given by the LDA and natural orbitals
between the two simulation cell sizes. We expect the finité"® Of the same quality.
size effects in the QMC calculations broadly to follow those
in the LDA, as we have found for the total energtés. E. DMC comparison of LDA and HF orbitals

In exact Kohn-Sham density-functional theory the total |n light of these results it is interesting to compare the
energy can be written entirely in terms of the one-body denquality of the nodal surfaces obtained with LDA and HF
sity matrix of the Kohn-Sham orbitals, whereas in a fully orbitals, which are both commonly used in the determinantal
interacting system both the one-body density matrix and th@arts of trial wave functions for QMC calculations.
pair-correlation function are required. Results for the pair- We investigated this by performing DMC calculations in
correlation function from accurate correlated wave functionssilicon with an fcc simulation cell containing 16 atoms. The
and LDA calculations are extremely differefitExact Kohn-  smaller simulation cell enabled a large number of indepen-
Sham density-functional theory reproduces the exact charggent configurations to be obtained rapidly. Wave functions
density and therefore exactly reproduces the diagonal expanded in a basis of atom-centered Gaussians were ob-
part of the density matrix. The off-diagonal part of the exacttained from the HF and DFT cotfecrysTAaLos We took
Kohn-Sham and interacting density matrices are not requiredpecial care to ensure that the LDA and HF calculations were
to be the same. In silicon we expect the LDA to give a gooddone in equivalent ways to try and eliminate any bias in the
approximation to the exact Kohn-Sham density matrix. Forcomparison. A basis set of four uncontractepl functions
this system our results show that teetire density matrices and oned polarization function per pseudoatom was opti-
are very similar in VMC and LDA. mized separately for each calculation. The quality of the ba-

sis set is high—to obtain the same energy within a plane
wave calculation would require a basis set cutoff of 12.5 Ry.
C. Natural orbitals We used the same nonlocal LDA pseudopotential as in our
The natural orbitals were obtained by diagonalizing theother calculations. In both calculations we used the same

density matrix in the basis of the LDA orbitals. An assess-and x functions and performed DMC simulations with an
ment of the statistical errors in the eigenvalues and eigenve@verage population of 640 walkers, performing approxi-
tors was made by subjecting the matrix to random perturbatately 6.2<10° walker moves. We obtained DMC total en-
tions of order of the statistical error. The eigenvalues varied@rgies of —107.488(3) eV per atom ane 107.464(3) eV
by up to +0.0004 on application of the small perturbations. Per atom for the LDA and HF guiding wave functions, re-
All the calculated eigenvalues of the density matrix lie in ~ SPectively, using the Ewald interaction in the many-body
the range &\;<2, as is required® Identical results were Hamiltonian. _ _ o
obtained when elements within statistical error of zero were The walker energies were approximately normally distrib-
explicitly zeroed. The overlap of the space occupied by thé/téd. Using a conventionattest, the 95% confidence inter-
LDA orbitals and the corresponding natural orbitals is meaVa@l on the difference in energies obtained was 0.002—0.046
sured by the absolute value of the determinant of the matri€V Per atom, showing that for this system it is very likely
of overlaps between these two sets of vectors. This gave @at the DMC energy from a determinant of LDA orbitals is

value of 0.9948, indicating that the spaces spanned are dewer than that from a determinant of HF orbitals. Therefore,
most the same. for this system, a determinant of LDA orbitals has a margin-

natural orbitals were very slightly larger than the correspond-

ing matrix elementg;; (by about 0.001 Consequently, the IV. EXCITATION ENERGIES
eigenvalues of the “unoccupied” natural orbitals were very
slightly decreased, so thatdis invariant. Therefore, a plot
of the eigenvalues of the density matrix would be indistin- The calculation of excited-state energies in solids using
guishable from Fig. 1, which shows the diagonal elements 0QMC methods is a fairly new area of research. Significant
the density matrix in the basis of LDA orbitals. successes have been achieved using direct methods, in which

A. Excited-state calculations
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separate QMC calculations are performed for the ground and Sci,éi(r), and (bUZZCivéi , whereéi is the destruction

excited states, and the excitation energy is calculated as thﬁ)erator forg;. The condition for a stationary value ef
energy differencé® In these direct methods a QMC calcu- generates a slecular equation

lation must be performed for each excitation. In contrast, for

the method described here a large number of excitation en- (V'—¢€,5)c,=0. (13
ergies are obtained from a single QMC calculation involving ) ] ) ]
averages over the ground-state wave function. The matrixS’ is the one-body density matrix, and the ele-

ments ofv® areVy=(yMa/H,a;]|y"), where

B. The extended Koopmans’s theorem

Our method for determining excitation energies corre- V;)j:Nf i(r) ¢y (r' )" (ry, ... rn)
sponds to a QMC formulation of the extended Koopmans's
theorem derived independently by Day, Smith, and Gafrod XHp(r' 15, ... rdr'dry-dry. (14

and by Morrell, Parr, and Lev}/: The EKT is closely related

to the earlier work of Feynmdhon calculating excitation H; consists of the terms in thN-electron Hamiltonian of
energies in the superfluid state e, although the quantum Eg. (1) involving coordinater,, so that

chemists appear to have developed the theory independently.
The EKT has been shown to give very good excitation ener- L
gies for simple molecular systerffsand has been applied to Hi=h,+ ;1 v(ry,r),
atomic and diatomic systemi$*°It appears particularly well J

suited to QMC calculations in which explicitly correlated whereh consists of the one-body kinetic energy operator and
many-body wave functions are used. Here we review thgonic potential, including both local and nonlocal pseudopo-
derivation following Ref. 10 and present our QMC formula- tential components, and s the electron-electron interaction

N
(15

tion. potential.
_ If a HF wave function is used fopN and the density
1. Valence-band energies matrix is expanded in a basis set of HF orbitals, thén

In this method the band energies are calculated as ionizdeduces to a matrix with the HR-particle eigenvalues on
tion energies. We start with an approximation to the normalthe occupied part of the diagonal, and zero everywhere else.
ized ground-state wave functiof¥. The wave function for The resulting excitation energies are those given by the well-
the N—1 electron system is approximated by the ansatz oknown Koopmans's theoreff. The contents of the EKT
eliminating an orbital fromy": method are now reasonably clear. The method consists of a

quasiparticlelike ansatz for the wave function of tKe-1
particle system, which is used to calculate the ionization en-
YN, ,fN)=f uk(r)gM(ry, ... rdre. (9 ergies of the system. Electron correlations are included, but
no allowance is made for relaxation of the other orbitals in
The valence orbital to be eliminated, , will be determined the presence of the excitation. Although this relaxation can
variationally. This ansatz is reminiscent of a quasiparticlede important in small systems, it is expected to be much less
wave function for the excited state, although the formulationimportant for excitations in extended systems such as the
is for N— 1 particle eigenstates of the Hamiltonian. Express-Silicon crystal studied here.
ing Eq. (9) in second quantization yields
2. Conduction-band energies
|¢N_1>:@v| M), (10 An analogous theory exists for the conduction-band ener-
gies. The wave function for th&l+1 electron system is
where 0, is the destruction operator for the statg. approximated by the ansatz of adding an orbitajto

The ionization energy is given by the difference in the .

expectation values of the Hamiltonian calculated with the PN o, )= Aug(r) (e, L), (16)

andN—1 electron wave functions:*! ~ _ _ L
where A is the antisymmetrizer and the orbita} is to be

NI N determined variationally. In second quantization we have
0,¢"|H|O,
OB S

(O,yN O,y PN H =0l (17)

The excitation energies; are defined by

e, = (YN H[yN) —

If 4N is an eigenfunction off, Eq.(11) may be written as

(18

R __NOdR.OI
NOITA,0,1|¢N <= - 7 -
- [T A (12 (MOOL )
N N
(W100,|47%) Expanding in a set of orbitals givaes.(r)=2c;.¢;(r) and

The denominator in Eq12) is the one-body density matrix. Of=3c;.a. The coefficientsc;. are the solutions of the
We now expand in a set of orbitalsp;}, so thatu,(r)  secular equation
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number of matrix elements that must be accumulated and
ensures the correct symmetry in the presence of statistical
noise.

(Ve— €,.5%)c.=0, (19

where the matrix elements axg;=(y"|aj[H,a]1/¢") and
Sfj:<_‘//,.\‘|aia;r|‘/./N>:5i_j_Pij . o .
It is instructive to introduce a new potential with matrix o )
elementsV; :Vivj +Vicj : C. Results for excitation energies
1. Full EKT results

Vi Zf ¢i(ro)hggi (ro)drg The correlation lengths along the VMC walks fgf; and
V;j; were found to be similar to those of the local energy and
density matrix, and the distribution of statistical errors was
similar to that for the density matrix. The elements/jf and
Vicj with the largest statistical errors were the diagonal ele-
ments. The statistical error bars on these elements are esti-
mated to bet 0.2 eV.

The matrix equation§l3) and(19) were diagonalized us-
ing a generalized eigenvalue solver. The ratios of the statis-
tical error bars to the mean values were significantly larger

I:for the diagonal elements &f; andViCJ- than forp;; . Just as

+NJ’ $i(ro) ¢; (ro)v(ro,ry)

X[(ry, ... r)|2drodry---dry

_Nf Gi(ro) ¢ (r)v(ro,r)¥(ro,rz, .y

X*(ry,.. (20

If we use a HF wave function and expand in a basis of H for the densit i i urbati lied t
orbitals, Vj; reduces to a matrix with the HR-particle ei- or the density matrix, small perturbations were appied to

genvalues on the diagonal, and zero everywhere else. In th%stimate the statistipal errors. in the eiggnvalue§ ar_1d eigen-
case one can readily identify the second and third terms iyectors. The numerical stability of the diagonalization was

Eq. (20) as, respectively, the Hartree and exchange termd

dmproved by explicitly zeroing elements ofj; and ij
(Similarly Vicj reduces to the HF energy eigenvalues on thé/vithin statistical error of zero. The accuracy of the eigenval-
unoccupied part of the diagongal.

. ,rN)dI’Odl’l' "dI’N .

ues was further verified by gradually increasing the number
of bands in the diagonalization procedure. The valence and
low-lying conduction-band energies were stable to within
+0.4 eV.

The resulting band energies are given in Table | and in
Fig. 3, with the energy at the top of the valence band set to
zero. Of thek points computed here, the available experi-
mental dataExp) are limited to thd” point. Because of this

3. VMC formulation of the EKT
We accumulate the matrix elements\gf andV;;, sub-
sequently forming the matri)(/icj =V;j—Vjj. The matrix el-
ementsVj; are given by

- . Hag(ry,...ry) we also give empirical pseudopotentigmp) datd®in Table
Vi=N| ¢i(r)ép(r’) N I and in Fig. 3, which should provide a good interpolation
between these data. Results for the Ewald and cutoff inter-
r!,r ,.“,r . . . . . .« .
XMZ—N)WI(I’L L r[2drdr e dry actions are in good agreement, indicating that the finite size

errors are not significant at the level of statistical accuracy
obtained here. The energies are in good qualitative agree-
(22) ment with the empirical data at all points except for the
As before, we use the permutation symmetry to write this asippers,; valence-band state, and th%e, conduction-band
state. The source of the error is principally the value of the
diagonal matrix elements for these state§, and V;; (see
next section
The EKT band energies at thépoint are in good agree-
) ment with the available experimental data, and are also in
xﬁdr’ ' good agreement with the DMC data from direct calculations
L |12 of the excitation energiesThe EKT valence-band width of

so thatN values are accumulated at each step. The terms2-46) eV is smaller than the value of 133 eV obtained

A ~ . . from the DMC calculations and is in good agreement with
contrllbutlng toanp/;// are already avallable_ln a.VMC cal- the experimental value of 126 eV. In comparison the HF
culation, allowingVj; to be accumulated with virtually no

. . _ . data show the well-known overestimation of band gaps and
additional cost beyond that re.quwed for the d.en3|ty matriXy2nd widths that is due to the neglect of correlation energy,
An analogous VMC formulation for calculatingi; was e | po gives excellent valence band energies while the
used. The single particle termby, appearing in the first conduction bands are too low in energy by 0.7-1.0 eV, and
term in Eq.(20) are evaluated directly without using Monte the GW data are in very good agreement with experiment.
Carlo integration. We found that using Monte Carlo integra-  The EKT is a formulation for the eigenstates of tNe
tion for all the terms resulted in a small increase in the vari-— 1 andN+1 electron systems, while the direct method is
ance of the matrix elements. Therefore, we prefer to calcuaimed at calculating the eigenstates of fhelectron system.

N

P(rq,..

N . Hog(ra, .1y

(22

late theﬁo terms directly. The matrix elementg; and V;;
were accumulated at the same time as the elemgntsThe

The EKT and direct results should therefore differ by the
exciton binding energy, but this energy is small for silicon

full crystal symmetry was again used, which reduces thend cannot be resolved at the level of statistical accuracy
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TABLE I. Band energies of silicon in eV.

VMC

Band EKT® EKT® DEKT® DEKTY DMC® HF  LDAY GW' Emg Exp
Ty 4.4 45 5.1 5.2 4.6 9.0 3.22 3.89 4.1 4.23,4.1
s 3.8 3.9 4.4 4.4 3.7 8.0 251 3.36 3.4 3.40,3.05
| 0.0 0.0 0.0 0.0 0.0 0.0 0.00 0.00 0.0 0.00
r, -—129 -131 -133 -134 -13.6 -189 -11.98 —11.95 -12.36 —12.5+0.6
Asg 4.0 4.7 5.4 5.7 9.0 3.46 45

Ay 3.0 3.1 3.6 3.6 6.8 1.68 25

Aj -06 -12 -13 -15 -1.7 -1.01 -0.9

Ay -50 -50 -54 -54 -6.3 -—5.38 -5.2

A, —116 —-11.9 -123 -125 —-16.4 —10.60 -10.6

Ay 4.7 4.8 5.7 6.0 7.2 1.88 2.4

Ay 2.1 2.3 2.7 3.0 5.5 0.61 1.3

Ag -17 -18 -24 -25 -38 -—245 -25

Ay -49 -48 -55 -57 -78 -5.01 -5.0

A, —116 -120 -11.7 -122 —-16.0 —10.08 -10.2

3, 6.4 5.4 6.7 6.1 5.73 6.0

PN 3.4 3.1 4.1 4.0 1.45 2.0

3, -11 -16 -12 -20 -2.14 -21

3, -18 -25 -19 -25 —4.50 -4.6

S -61 -63 -64 —68 —-6.79 -6.7

3, -89 -90 -95 -98 -8.70 -8.7

8/MC-EKT energies using the cutoff interactions. The statistical error barscérd eV.

bYMC-EKT energies using the Ewald interactions. The statistical error bars:aré eV.

‘Diagonal approximation to the VMC-EKT energies using the cutoff interactions. The statistical error bars
are+0.2eV.

YDiagonal approximation to the VMC-EKT energies using the Ewald interactions. The statistical error bars
are+0.2 eV.

®Direct DMC calculations, with statistical error bars #f0.2 eV, from Ref. 9.

Reference 42.

9This work.

"Reference 44.

'Reference 43.

IFrom the compilation given in Ref. 44.

obtained. Depending on the application, one would like to becon and by TanaK4 to calculate quasihole energies in NiO.
able to choose whether to include excitonic effects, so that iThis approximation has the computational advantage that far
is advantageous to have the different QMC techniques avaikewer matrix elements are required, and also that the prob-
able. Clearly further refinement of excited-state QMC meth{ems of statistical noise are reduced, because the values of
ods is required, but the results from the EKT and direct aponly two matrix elements enter the calculation of each band
proaches are promising for the study of more stronglyenergy. However, the results are basis set dependent, and
correlated systems, for which the LDA adV methods are  could differ significantly between, for example, a HF and
less reliable. LDA basis.

If we use a HF wave function and expand in a basis set of

2. Diagonal approximations HF orbitals then the matrice\ﬁ}’j , Vicj , andp;; are all diag-

If we neglect the off-diagonal element \of; , Vicj , andp; onal, and consequently the full EKT and the DEKT are
then the valence- and conduction-band energies can be apguivalent. In general, for correlated wave functions, the
proximated by DEKT gives neither an upper nor lower bound to the energy

obtained from the full EKT. Comparison with the data from

oer Vi oeer Vi the DEKT is also made in Table I. The DEKT values are

€, =y €ic == 23 ¢ he full EKT values, including th -
iv o' Cic 1-p; close to the fu values, including the two cases men

tioned above where the agreement with experiment is poor.
where the superscript DEKT denotes the diagonal approxiThe DEKT works quite well for the valence bands and
mation to the EKT. This approximation has been used withirslightly less well for the conduction bands, because the off-
VMC by Fahyet al**to calculate quasihole energies in sili- diagonal matrix elements df/;cj coupling the unoccupied
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AN large systems, it therefore requires fewer statistically inde-
8 pendent samples in the DEKT to obtain excitation energies
1 P to a given statistical accuracy than with direct methods. The

/ g ~. . . . ipp
3 I scaling behavior of the full EKT is more difficult to analyze
o /2 i because we are required to diagonalize noisy matrix equa-
b R R tions, where the number of off-diagonal matrix elements in-

creases as the square of the system size, and where there are
certainly statistical correlations between matrix elements.

-2+

< / 4T/ V. CONCLUSIONS
o A]," \ . 5, ) /
& 4 / \ 4 NS 1 We have calculated the one-body density matrix for the
5 ¢ g s,/ valence electrons of bulk silicon using QMC techniques.
-6r / \ 5 1 In real space, the VMC and LDA density matrices are
\ very similar, the greatest differences being due to the differ-
8l \ s i ing charge densities in each case. The natural orbitals, ob-
@1 tained by diagonalizing the density matrix, very closely re-
semble the LDA orbitals. The occupation numbers of the
10 WA A i natural orbitals differ significantly from the noninteracting

! ~ i values, reducing linearly with increasing energy for the LDA
-12 ¢ R - occupied bands. The occupations are about 3% lower than
8 the noninteracting value near the top of the valence band,

—14 and above the Fermi level, the occupation numbers fall

L A T A X UK z T slowly to zero.
- o A DMC calculation for the ground-state energy of silicon

FIG. 3. The band structure of silicon, as computed within theging 5 trial wave function containing a determinant of natu-

VMC extended Koopmans’s theorem using the cutoff interaction,5| orhitals gives an energy that is almost identical to that

© ﬁndfthethaal(: #tgrtactuoip), and V\;:th'n the.ﬂll‘D'tA(t*i: Tlhe obtained using a determinant of LDA orbitals. This shows

e st o et e et oo v o o the qualty o the nodl surfacesis amost identcl i
) each case. We used DMC calculations to compare the quality

ted for clarity, but they are the same size as for the cutoff interac- . . :
tion. As a guide to the eye, the empirical pseudopotential data o .f the nodal surfaces obtained with LDA and HF orbitals,

Ref. 43 are showitsolid lineg, which are in good agreement with inding t_hat, thg LDA orbitals gave a sllghtly lower DMC
the available experimental data. energy, |nd|cat|ng that for the sygtem 'stud'led the nodal sur-
face of a determinant of LDA orbitals is slightly better. We
note that a previous DMC study of small silicon clusters
states are more significant. In similar VMC calculations forfound that natural orbitals obtained from a multiconfigura-
silicon using the DEKT and a simulation cell containing 64 tional Hartree-Fock calculation gave a better nodal surface
electrons, Fahyet al!® calculated a valence-band width of than a single determinant of HF orbitals.
14.54) eV, which is larger than both our value of 1@BeV We have calculated excitation energies in silicon using an
and the experimental value of 1265 eV. Fahyet al’®also  extension of Koopmans's theorem applicable to correlated
obtained occupation numbers of 1(86and 1.923) for the  wave functions. The Monte Carlo formulation is very similar
I'; and I',5 valence-band states, respectively, which areto that required to obtain the density matrix. The resulting
within error bars of our results of 1.98@F and 1.937%). band energies are in good agreement with the available ex-
The scaling with system size of the diagonal approximaferimental data.
tion is very advantageous compared with direct evaluation of The success of the VMC-EKT relies on a cancellation of
excitation energies. In direct methods, the fractional energgrrors between the ground- and excited-state energies. The
change due to the promotion of an electron is consideredvave functions for the excited states contain the variational
This energy change is inversely proportional to the numbefreedom of the orbitalsi, andu,. This variational freedom
of electrons in the system, i.e., a ‘NI7 effect. The precision in the orbitals reduces the energy of the-1 andN+1
of the calculation must therefore be sufficient to resolve theelectron states and improves the agreement with experiment.
energy change amid the statistical noise. This requirement i the diagonal approximation to the EK(DEKT), the u,
very challenging for small band gap materials, as the systerandu. orbitals are fixed and there is no variational freedom
must also be sufficiently large to approximate the infinitein the excited-state wave functions. We have found that the
solid. In the DEKT, the band energies are computed directhDEKT works quite well for silicon using LDA orbitals fau,
as averages over the square of the ground-state wave funand u.. The diagonal approximation is exact within HF
tion, rather than as the difference between averages over tllkeeory, so that we expect it to be a good approximation for
squares of the ground- and excited-state wave functions. Thigeakly correlated systems.
greatly improves the sampling statistics. We have found that Greater accuracy could be obtained with more accurate
the errors inV}, Vi, andp; scale as the inverse of the trial functions, or using DMC in the calculation M}’] , Vicj ,
square root of the number of independent electron configuand p;; . In comparison with direct methods of calculating
rations, independently of the system size. For sufficientlyexcitation energie§,°the EKT has the advantage that only a
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single calculation involving the ground state is required toenergies in larger systems with a greater efficiency than is
obtain many excitation energies. possible with direct techniques.

The EKT involves assumptions about the nature of the
excited-state wave functions, but nevertheless is a practical ACKNOWLEDGMENTS
method for calculating excitation energies including correla-  This work was supported by the Engineering and Physical
tion effects for relatively weakly correlated systems. The di-Sciences Research CoungilK). Our calculations were per-
agonal approximation to the EKT has a very advantageoutormed on the CRAY-T3D at the Edinburgh Parallel Com-
scaling with system size compared with direct QMC calcu-puting Center, and the Hitachi SR2201 located at the Uni-
lations. This scaling thereby allows the study of excitationversity of Cambridge High Performance Computing Facility.
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