
PHYSICAL REVIEW B 15 JUNE 1998-IIVOLUME 57, NUMBER 24
Quantum Monte Carlo calculations of the one-body density matrix
and excitation energies of silicon

P. R. C. Kent, Randolph Q. Hood, M. D. Towler, R. J. Needs, and G. Rajagopal
Cavendish Laboratory, Madingley Road, Cambridge CB3 0HE, United Kingdom

~Received 8 October 1997!

Quantum Monte Carlo~QMC! techniques are used to calculate the one-body density matrix and excitation
energies for the valence electrons of bulk silicon. The one-body density matrix and energies are obtained from
a Slater-Jastrow wave function with a determinant of local-density approximation~LDA ! orbitals. The QMC
density matrix evaluated in a basis of LDA orbitals is strongly diagonally dominant. The natural orbitals
obtained by diagonalizing the QMC density matrix resemble the LDA orbitals very closely. Replacing the
determinant of LDA orbitals in the wave function by a determinant of natural orbitals makes no significant
difference to the quality of the wave function’s nodal surface, leaving the diffusion Monte Carlo energy
unchanged. The extended Koopmans’s theorem for correlated wave functions is used to calculate excitation
energies for silicon, which are in reasonable agreement with the available experimental data. A diagonal
approximation to the theorem, evaluated in the basis of LDA orbitals, works quite well for both the quasihole
and quasielectron states. We have found that this approximation has an advantageous scaling with system size,
allowing more efficient studies of larger systems.@S0163-1829~98!05224-2#
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I. INTRODUCTION

The two most common, practical quantum Monte Ca
~QMC! methods for realistic systems are the variatio
quantum Monte Carlo1,2 ~VMC! and diffusion quantum
Monte Carlo2,3 ~DMC! methods. In VMC, expectation value
are computed with an approximate many-body trial wa
function. In DMC, imaginary time evolution of the many
body Schro¨dinger equation in principle gives exact resul
although in practice one needs to make the ‘‘fixed-node
proximation’’ to account for the antisymmetry of the man
electron wave function. In the fixed-node approximation,
nodes of the propagated wave function are restricted to th
of the trial wave function. The accuracy of this approxim
tion is central to DMC simulations of many-electron sy
tems. One of the aims of our work is to investigate the
fectiveness of this approximation for extended systems, w
the long-term goal of obtaining better trial wave functions

In this paper we calculate the one-body density matrix
the valence electrons of silicon within the VMC framewor
and obtain the natural orbitals that diagonalize the den
matrix. These calculations require the whole of the den
matrix throughout all of the six-dimensional spacer3r 8, not
just at a few points in space as has been obtained before
our knowledge, this is the first time that the one-body den
matrix and natural orbitals have been obtained for an
tended, inhomogeneous, interacting electron system. Re
evidence has suggested4 that a determinant of natural orbita
may give a better nodal surface than a determinant
Hartree-Fock~HF! orbitals. Our results show that a determ
nant of natural orbitals has a similar quality nodal surface
a determinant of local-density approximation~LDA ! orbitals
for bulk silicon. In a separate calculation we find that a d
terminant of LDA orbitals has a slightly better nodal surfa
than a determinant of HF orbitals.

There is considerable interest in calculating excitation
570163-1829/98/57~24!/15293~10!/$15.00
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ergies using QMC techniques. Excitation energies may
obtained by analyzing DMC decay curves,5,6 but this method
has not proven very useful due to the large statistical no
Furthermore, as the quality of the ground-state trial wa
function improves, less information about excited states
obtained. A combination of ground- and excited-state wa
functions must then be used to obtain upper bounds for
excitation energies. Direct methods for calculating excitat
energies have met with more success. Mita´š and Martin have
calculated an excitation energy in a molecular nitrogen so
by performing DMC calculations for the ground and excit
states.7 Mitáš has also reported similar calculations for tw
excitation energies in diamond.8 Recently9 we used the same
method to calculate 27 excitation energies in silicon, obta
ing very good agreement with experiment for the low-lyin
excitation energies, while the energies of the higher-ly
excitations were somewhat too large. In this paper we ca
late excitation energies using a different approach. Here
use the ‘‘extended Koopmans’s theorem’’~EKT!,10,11 which
derives from quantum chemistry, and involves the one-bo
density matrix. We have applied this theorem within VMC
calculate the excitation energies of silicon at four inequiv
lent k points within the Brillouin zone. The energies are
good agreement with the available experimental data wit
level of agreement similar to direct excitation calculation
We also test the diagonal approximation to the EKT eva
ated using the LDA orbitals, which was used previously
estimate quasihole energies in silicon13 and NiO.14 We find
that the approximation performs well in silicon and that
has an advantageous scaling with system size. This all
more efficient studies of excitations in large systems than
possible with existing direct techniques.

The layout of this paper is as follows. In Sec. II we briefl
describe the QMC techniques used in our calculations,
cluding the Hamiltonian, the trial wave function, and th
relevance of natural orbitals to QMC calculations. In Sec.
we present and discuss our results for the one-body den
15 293 © 1998 The American Physical Society
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15 294 57KENT, HOOD, TOWLER, NEEDS, AND RAJAGOPAL
matrix and the natural orbitals of silicon. In Sec. IV we d
scribe the extended Koopmans’s theorem and its applica
to the band structure of silicon.

II. QMC SIMULATIONS OF SILICON

In this section we briefly describe our QMC calculation
For a more detailed discussion of the methods we refer
reader to the literature.2,3,15–17

A. The Hamiltonian

For this study we used an fcc simulation cell, with pe
odic boundary conditions, containing 54 Si41 ions and 216
electrons. The Hamiltonian for our system, within the Bo
Oppenheimer approximation, is

Ĥ5(
i

2
1

2
¹ i

21(
i

(
a

va~r i ,da!1
1

2 (
i

(
j Þ i

v~r i ,r j !

1
1

2 (
a

(
bÞa

vab~da ,db!. ~1!

The positions of theN electrons in the supercell are denot
by r i and the ion locations are denoted byda . The electron-
ion potentialva is modeled by a norm-conserving nonloc
pseudopotential18 obtained from atomic calculations pe
formed within the LDA to density-functional theory. Th
standard method for including the interparticle Coulomb
teractions in periodic systems is to use the Ewald interac
potential. We have found that this interaction gives rise
significant finite size errors, especially for small simulati
cells. Recently we introduced a formulation of the electro
electron interaction for simulations using periodic bound
conditions that eliminates this problem17 ~hereafter referred
to as the ‘‘cutoff interaction’’!. This interaction satisfies th
conditions that~i! it gives the correct Hartree energy and~ii !
it has the proper 1/r form for the interaction of an electro
with its exchange-correlation hole.@The Ewald interaction
violates condition~ii !.# Here we present results for excitatio
energies calculated with both the Ewald and cutoff inter
tions, using a wave function that was optimized using
cutoff interaction. For consistency one should use the sa
form of interaction between all the particles, but it turns o
that if we apply our new interaction to a system of quantu
mechanical electrons and classical ions then it reduce
using the Ewald interaction for the terms involving the io
while the cutoff interaction applies only to the electro
electron interactions. Note that the cutoff interaction is f
mulated independently of QMC itself and may be used w
other techniques for periodic systems.17

B. The trial wave function

The choice of trial wave function is of critical importanc
for VMC and DMC calculations. We have used a stand
Slater-Jastrow form:
n
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CT~r1 ,...,rN!5D↑~r1 ,...,rN/2!D
↓~rN/2 11 ,...,rN!

3expS (
i 51

N

x~r i !2(
i , j

N

u~r i j !D , ~2!

where the spin-up and spin-down Slater determinantsD↑ and
D↓ are multiplied by a Jastrow factor that contains a on
body x function and two-body correlation factoru. Our x
function has the full symmetry of the diamond structure a
is expressed as a Fourier series containing six inequiva
nonzero, parameters. We used spherically symmetric par
and antiparallel spinu functions,16 which satisfy the
electron-electron cusp conditions19 and contain a total of 16
parameters. The optimized parameter values were obta
by minimizing the variance of the energy.16

The spin-up and spin-down Slater determinants w
formed from single-particle orbitals obtained from an LD
calculation employing the same pseudopotential as in
QMC calculations. The LDA orbitals were calculated at t
G-point of the simulation-cell Brillouin zone using a plan
wave basis set with an energy cutoff of 15 Ry. Although t
G-point scheme does not give optimal Brillouin zon
sampling,20 it does preserve the full symmetry of the syste
and allows comparison with a wider number of establish
results. TheG-point of the simulation-cell Brillouin zone un
folds to four inequivalentk-points in the primitive Brillouin

zone. These are~0,0,0! ~the G point!, (0,0,23 )2p/a ~a point
along the D axis, hereafter referred to as theD point!,

(0,2
3 , 2

3 )2p/a ~a point along theS axis, hereafter referred to

as theS point!, and (13 , 1
3 , 1

3 )2p/a ~a point along theL axis,
hereafter referred to as theL-point!.

It is highly desirable to improve the quality of the tria
wave functions used in QMC calculations. Improvements
trial wave functions can be classified into three types:~i!
improvement of the Jastrow factor,~ii ! using a linear combi-
nation of determinants, and~iii ! improvements in the orbitals
forming the determinants. In this paper we will investigate
possible improvement of type~iii !, namely, the use of natura
orbitals. The question of which single-particle orbitals le
to the best approximation to the exact many-body wave fu
tion is still open. Furthermore, this choice fixes the nod
surface of the trial wave function and therefore determin
the accuracy of the fixed-node approximation. LDA and H
orbitals have been used successfully in a number
atomic,16,21molecular,22,23and solid24 QMC calculations, but
so far it has not proved possible to perform a direct optim
zation of the single-particle orbitals of an extended syste
A study of first row atoms and molecules25,26 showed that
lower energies can be obtained in both VMC and DMC u
ing a trial wave function containing several determinants
tained from a multiconfiguration self-consistent fie
~MCSCF! calculation. However, a similar study for sma
silicon clusters found that trial wave functions containing
single determinant of natural orbitals computed within
MCSCF scheme gave better DMC results than some m
tideterminant wave functions.4 This result strongly suggest
that the natural orbitals result in improved nodal surfac
and motivates our calculation of the natural orbitals for bu
silicon.

An expansion of a wave function in Slater determinants



r

s

ic
e
ra
rs
s
th

no
gh
en
s.
o

ra
n

i
m
d
x
or
ef
o
-

of
ac
id
tr

in
te

il-

a
t

er

xi
15
r
al
n,
th

th
o
o

r
an

a

-
de-
ity

.
ity

ay
e

MC
a
for

-

a
the
he
cy.

nts
n-
t of

DA

he

57 15 295QUANTUM MONTE CARLO CALCULATIONS OF THE . . .
natural orbitals requires a smaller number of terms fo
given accuracy than expansions using other orbitals.27,28Cal-
culation of the natural orbitals is, however, costly, and le
expensive schemes such as natural pair orbitals29,30 have
been proposed to improve convergence in quantum chem
calculations. It is not clear that orbitals arising in schem
designed to accelerate convergence of configuration inte
tion ~CI! calculations should give smaller fixed-node erro
in DMC calculations than LDA or HF orbitals. However, a
mentioned above, there is some evidence to suggest
natural orbitals have this property. Natural orbitals have
frequently been computed within fermion QMC, althou
VMC and DMC calculations of natural orbitals have be
reported for the ground states of the Li, C, and Ne atom31

To our knowledge, no calculations of natural orbitals f
realistic extended fermion systems have appeared in the
erature to date, although for homogeneous systems the t
lational symmetry requires the natural orbitals to be pla
waves.

Systematic studies of multideterminant wave functions
QMC are lacking for solids. It seems reasonable to assu
that multideterminant wave functions will have improve
nodes, and therefore give a better representation of the e
wave function, but there is little direct evidence to supp
this. Multiconfigurational approaches include correlation
fects, but do so relatively inefficiently—large numbers
terms ~configurations! are usually required to obtain a sig
nificant proportion of the correlation energy. This form
wave function is unattractive for QMC as we require an
curate representation of the wave function that can be rap
evaluated. Therefore, we obtain the one-body density ma
and hence the natural orbitals from a VMC calculation us
a correlated trial wave function, bypassing the need to de
mine them using a multideterminantal calculation.

C. VMC and DMC calculations

In VMC we compute the expectation value of the Ham

tonian Ĥ or other operator, with a trial wave functionCT .
This method gives a rigorous upper bound to the ex
ground-state energy. The Metropolis algorithm is used
generate electron configurationsR distributed according to
uCT(R)u2, and the energy calculation is performed by av

aging the local energyCT
21ĤCT over this distribution.

In our DMC calculations we use the short-time appro
mation for the Green’s function with a time step of 0.0
a.u., which has been shown to give a small time-step erro
silicon.32 Importance sampling is introduced via the tri
wave functionCT . We make the fixed node approximatio
restricting the nodes of the DMC solution to be those of
trial wave function. Approximately 153103 statistically in-
dependent electron configurations were used and
acceptance/rejection ratio was greater than 99.9%. The c
putational cost of this method scales with the third power
the system size. Exact fermion techniques, such as the
lease node QMC and CI methods, have computational
quirements increasing exponentially with the system size
are impractical for the system sizes used here.
a

s

al
s
c-

at
t

r
lit-
ns-
e

n
e

act
t
-
f

-
ly
ix
g
r-

ct
o

-

-

in

e

e
m-
f

re-
e-
d

III. CALCULATION OF THE DENSITY MATRIX
AND NATURAL ORBITALS

A. Density matrix

The one-body density matrix33 for a normalized wave
function c is defined as

r~r ,r 8!5NE c* ~r ,r2 ,...,rN!c~r 8,r2 ,...,rN!dr2¯drN .

~3!

To facilitate calculation we expand the density matrix in
basis of orbitalsf i leading to

r~r ,r 8!5(
i , j

r i j f i~r !f j* ~r 8!. ~4!

We refer to the diagonal elementsr i i as the orbital occupa
tion numbers. For wave functions consisting of a single
terminant, such as HF or LDA wave functions, the dens
matrix is idempotent (r5r2) and takes the form of a sum
over the occupied orbitals, i.e.,

r~r ,r 8!52(
i 51

N/2

f i~r !f i* ~r 8!, ~5!

so that the occupation numbers are 2~including spin degen-
eracy! for occupied orbitals and 0 for unoccupied orbitals

We write the matrix elements of the interacting dens
matrix r i j as expectation values over the distributionucu2:

r i j 5NE f i* ~r1!f j~r 8!
c~r 8,r2 ,...,rN!

c~r1 ,...,rN!

3uc~r1 ,...,rN!u2dr 8dr1¯drN . ~6!

The permutation symmetry allows us to rewrite this in a w
that is efficient for Monte Carlo evaluation. Denoting th
average over the distributionucu2 as ^¯& ucu2, the Monte
Carlo expectation value is written as

r i j 5K (
n51

N E f i* ~rn!f j~r 8!
c~ ...,r 8,...!

c~ ...,rn ,...!
dr 8L

ucu2
, ~7!

so thatN values are accumulated at each step along the V
walk. The integral overdr 8 is performed by summing over
grid of uniform spacing whose origin is chosen randomly
each electron configuration. The same grid inr 8 is used for
each term in Eq.~7!, which further reduces the computa
tional cost. We tested a series of grid sizes for ther 8 integral,
using identical configurations for each grid size to obtain
correlated sampling estimate of the difference between
integrals. We found that a grid containing 125 points in t
simulation cell sampled the integral with sufficient accura

Provided that the density of points in ther 8 integral is
kept constant, the statistical error in the individual eleme
of the density matrix for a given number of statistically i
dependent configurations is approximately independen
system size.

We used a basis set consisting of the lowest energy L
orbitals at the 27k points in the primitive Brillouin zone. We
tested the effect of varying the number of orbitals in t
basis. We found that approximately 40 orbitals perk point
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15 296 57KENT, HOOD, TOWLER, NEEDS, AND RAJAGOPAL
were sufficient, although to retain the symmetry we includ
all members of a degeneracy, so that the actual number
was either 39 or 40 orbitals, depending on thek point. The
normalization used in Eq.~3! requires that

N5Trr, ~8!

which provides a practical test for the completeness of
basis set. The total occupation of the matrix~Trr! was
215.9~2!, which is within the statistical error of the numbe
of electrons in the system, indicating completeness of
basis at the level of the statistical accuracy obtained.

For a given number of Monte Carlo moves, the best s
tistics are obtained by accumulating all nonzero matrix e
ments and applying the symmetry afterwards. However,
computationally very expensive to accumulate all of the
and we found that a more efficient procedure was to ac
mulate only the independent nonzero matrix elements.
basis set of LDA orbitals are basis functions of the unita
irreducible representations of the symmetry groupOh

7 . Using
the ‘‘orthogonality condition for matrix representations’’34

we inferred that elements involving products of orbitals fro
inequivalentk points and of differing representations a
zero. We ensured that every occurrence of a given repre
tation was identical, so that products between functions
longing to different rows were orthogonal. This procedu
reduced the total number of independent and nonzero m
elements,r i j , from 42094 to 582 elements.

These matrix elements were sampled using approxima
6.63105 statistically independent configurations. The cor
lation lengths along the VMC walks of both the local ener
and density matrix were found to be essentially the sam

B. Results for the density matrix

We found the matrixr i j to be very nearly diagonal, with
little coupling between LDA orbitals. Double occupanc
~spin up and down! of orbitals is denoted by the value 2.

FIG. 1. Occupation numbers~diagonal elements of the densit
matrix in the basis of LDA orbitals! plotted against the LDA energy
for eachk point. These are theG point ~s!, D ~L!, S ~,!, andL
~h! points on theD, S, and L axes, respectively. The statistic
error bars are approximately equal to the sizes of the symbols
the conduction-band states and are about 5 times smaller tha
symbols for the valence-band states.
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The maximum difference between the interacting occupa
numberr i i and the LDA occupation number was 0.0625~5!,
which occurred at theG258 state at the top of the valenc
band. The magnitude of the largest off-diagonal matrix e
ment was 0.014~1!, which is of similar order to the occupa
tion number of the lowest unoccupied orbitals. The fractio
errors in occupation numbers for orbitals of low occupati
were large in comparison to those of high occupation. W
found that 97.6% of the total occupation of the density m
trix is contained within the four occupied LDA bands at ea
k point, and 99.0% is obtained within the first ten bands.
Fig. 1 we plot the occupation numbers against the LDA ba
energies. The occupation numbers decrease almost line
with increasing LDA energy for both the occupied and u
occupied bands.

In Fig. 2 we show the density matrixr(r ,r 8) in the ~110!
plane, and the differences between the VMC and LDA m
trices. The coordinater is fixed at the center of a covalen
bond, andr 8 ranges over the~110! plane passing through th
atomic positions. The density matrix consists of an asymm
ric central peak, reduced in width along the bonding dire
tion. A longer-ranged structure is present in areas of h
valence charge density, smaller by approximately one or
of magnitude than the peak.

The VMC value for the peak in the density matrix on th
bond center atr5r 8 is 1.7% smaller than the LDA value
The VMC density matrix has a larger magnitude around

or
the

FIG. 2. ~a! The VMC one-body density matrix,rVMC(r ,r 8) and
~b! rVMC(r ,r 8)2rLDA(r ,r 8), in the~110! plane passing through th
atoms withr fixed at the bond center.r is normalized such tha
r(r ,r )5n(r ), the charge density at the bond center. The silic
atoms and bonds are shown schematically.
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57 15 297QUANTUM MONTE CARLO CALCULATIONS OF THE . . .
neighboring silicon ions than the LDA density matrix, whic
consequently has a slightly smaller range. We also exam
the density matrix in interstitial regions, where we fou
more structure to be present. Again, the LDA and VMC
sults were very similar, with small differences between
two cases arising principally from the differing charge de
sities.

To investigate the effect of using a finite size simulati
cell we compared the LDA density matrix computed for
3333 and 43434 k-point meshes, corresponding
simulation cells containing 54 and 128 atoms, respectiv
We found that the central peak was largely unchanged
the longer-ranged structure was in qualitative agreem
The central maximum in the density matrix in Fig. 2 is at t
point r5r 8 and its magnitude is directly proportional to th
valence charge density at that point, which differed by 4.
between the two simulation cell sizes. We expect the fin
size effects in the QMC calculations broadly to follow tho
in the LDA, as we have found for the total energies.17

In exact Kohn-Sham density-functional theory the to
energy can be written entirely in terms of the one-body d
sity matrix of the Kohn-Sham orbitals, whereas in a fu
interacting system both the one-body density matrix and
pair-correlation function are required. Results for the pa
correlation function from accurate correlated wave functio
and LDA calculations are extremely different.35 Exact Kohn-
Sham density-functional theory reproduces the exact ch
density and therefore exactly reproduces the diagonalr5r 8
part of the density matrix. The off-diagonal part of the exa
Kohn-Sham and interacting density matrices are not requ
to be the same. In silicon we expect the LDA to give a go
approximation to the exact Kohn-Sham density matrix. F
this system our results show that theentire density matrices
are very similar in VMC and LDA.

C. Natural orbitals

The natural orbitals were obtained by diagonalizing
density matrix in the basis of the LDA orbitals. An asse
ment of the statistical errors in the eigenvalues and eigen
tors was made by subjecting the matrix to random pertur
tions of order of the statistical error. The eigenvalues var
by up to60.0004 on application of the small perturbation
All the calculated eigenvaluesl i of the density matrix lie in
the range 0<l i<2, as is required.33 Identical results were
obtained when elements within statistical error of zero w
explicitly zeroed. The overlap of the space occupied by
LDA orbitals and the corresponding natural orbitals is m
sured by the absolute value of the determinant of the ma
of overlaps between these two sets of vectors. This gav
value of 0.9948, indicating that the spaces spanned are
most the same.

The eigenvalues of the density matrix for the ‘‘occupied
natural orbitals were very slightly larger than the correspo
ing matrix elementsr i i ~by about 0.001!. Consequently, the
eigenvalues of the ‘‘unoccupied’’ natural orbitals were ve
slightly decreased, so that Trr is invariant. Therefore, a plo
of the eigenvalues of the density matrix would be indist
guishable from Fig. 1, which shows the diagonal element
the density matrix in the basis of LDA orbitals.
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D. DMC calculations

As well as the LDA and VMC calculations, we performe
fixed-node DMC calculations with trial wave functions o
the form of Eq.~2!, using LDA and natural orbitals to form
the determinants. Reoptimization of the Jastrow andx func-
tions to improve sampling efficiency in the DMC calculatio
was found to be unnecessary. The resulting energies w
2107.59 eV~LDA !, 2107.69(1) eV~VMC with LDA or-
bitals!, 2107.71(1) eV ~VMC with natural orbitals!,
2108.10(1) eV ~DMC with LDA orbitals!, and
2108.09(1) eV ~DMC with natural orbitals!. The VMC
wave function appears to show a very slight improvem
with natural orbitals compared with LDA orbitals. Howeve
to within statistical accuracy, the DMC energies obtain
with LDA and natural orbitals are the same. This indica
that the nodal surfaces given by the LDA and natural orbit
are of the same quality.

E. DMC comparison of LDA and HF orbitals

In light of these results it is interesting to compare t
quality of the nodal surfaces obtained with LDA and H
orbitals, which are both commonly used in the determinan
parts of trial wave functions for QMC calculations.

We investigated this by performing DMC calculations
silicon with an fcc simulation cell containing 16 atoms. Th
smaller simulation cell enabled a large number of indep
dent configurations to be obtained rapidly. Wave functio
expanded in a basis of atom-centered Gaussians were
tained from the HF and DFT code36 CRYSTAL95. We took
special care to ensure that the LDA and HF calculations w
done in equivalent ways to try and eliminate any bias in
comparison. A basis set of four uncontractedsp functions
and oned polarization function per pseudoatom was op
mized separately for each calculation. The quality of the
sis set is high—to obtain the same energy within a pla
wave calculation would require a basis set cutoff of 12.5 R
We used the same nonlocal LDA pseudopotential as in
other calculations. In both calculations we used the samu
and x functions and performed DMC simulations with a
average population of 640 walkers, performing appro
mately 6.73105 walker moves. We obtained DMC total en
ergies of2107.488(3) eV per atom and2107.464(3) eV
per atom for the LDA and HF guiding wave functions, r
spectively, using the Ewald interaction in the many-bo
Hamiltonian.

The walker energies were approximately normally distr
uted. Using a conventionalt-test, the 95% confidence inter
val on the difference in energies obtained was 0.002–0.
eV per atom, showing that for this system it is very like
that the DMC energy from a determinant of LDA orbitals
lower than that from a determinant of HF orbitals. Therefo
for this system, a determinant of LDA orbitals has a marg
ally better nodal structure than a determinant of HF orbita

IV. EXCITATION ENERGIES

A. Excited-state calculations

The calculation of excited-state energies in solids us
QMC methods is a fairly new area of research. Signific
successes have been achieved using direct methods, in w
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15 298 57KENT, HOOD, TOWLER, NEEDS, AND RAJAGOPAL
separate QMC calculations are performed for the ground
excited states, and the excitation energy is calculated as
energy difference.7–9 In these direct methods a QMC calc
lation must be performed for each excitation. In contrast,
the method described here a large number of excitation
ergies are obtained from a single QMC calculation involvi
averages over the ground-state wave function.

B. The extended Koopmans’s theorem

Our method for determining excitation energies cor
sponds to a QMC formulation of the extended Koopman
theorem derived independently by Day, Smith, and Garro10

and by Morrell, Parr, and Levy.11 The EKT is closely related
to the earlier work of Feynman37 on calculating excitation
energies in the superfluid state of4He, although the quantum
chemists appear to have developed the theory independe
The EKT has been shown to give very good excitation en
gies for simple molecular systems,38 and has been applied t
atomic and diatomic systems.39,40 It appears particularly wel
suited to QMC calculations in which explicitly correlate
many-body wave functions are used. Here we review
derivation following Ref. 10 and present our QMC formul
tion.

1. Valence-band energies

In this method the band energies are calculated as ion
tion energies. We start with an approximation to the norm
ized ground-state wave functioncN. The wave function for
the N21 electron system is approximated by the ansatz
eliminating an orbital fromcN:

cN21~r2 , . . . ,rN!5E uv* ~r1!cN~r1 , . . . ,rN!dr1 . ~9!

The valence orbital to be eliminated,uv , will be determined
variationally. This ansatz is reminiscent of a quasiparti
wave function for the excited state, although the formulat
is for N21 particle eigenstates of the Hamiltonian. Expre
ing Eq. ~9! in second quantization yields

ucN21&5ÔvucN&, ~10!

whereÔv is the destruction operator for the stateuv .
The ionization energy is given by the difference in t

expectation values of the Hamiltonian calculated with theN
andN21 electron wave functions:11,41

ev5^cNuĤucN&2
^ÔvcNuĤuÔvcN&

^ÔvcNuÔvcN&
. ~11!

If cN is an eigenfunction ofĤ, Eq.~11! may be written as

ev52
^cNuÔv

†@Ĥ,Ôv#ucN&

^cNuÔv
†ÔvucN&

. ~12!

The denominator in Eq.~12! is the one-body density matrix
We now expand in a set of orbitals$f i%, so that uv(r )
nd
he

r
n-

-
s

tly.
r-

e

a-
l-

f

e
n
-

5(civf i(r ), and Ôv5(civâi , whereâi is the destruction
operator forf i . The condition for a stationary value ofev
generates a secular equation

~Vv2evSv!cv50. ~13!

The matrixSv is the one-body density matrix, and the el
ments ofVv areVi j

v 5^cNuâ j
†@Ĥ,âi #ucN&, where

Vi j
v 5NE f i~r1!f j* ~r 8!c* ~r1 , . . . ,rN!

3Ĥ1c~r 8,r2 , . . . ,rN!dr 8dr1¯drN . ~14!

Ĥ1 consists of the terms in theN-electron Hamiltonian of
Eq. ~1! involving coordinater1 , so that

Ĥ15ĥ11(
j Þ1

N

v~r1 ,r j !, ~15!

whereĥ consists of the one-body kinetic energy operator a
ionic potential, including both local and nonlocal pseudop
tential components, andv is the electron-electron interactio
potential.

If a HF wave function is used forcN and the density
matrix is expanded in a basis set of HF orbitals, thenVi j

v

reduces to a matrix with the HFN-particle eigenvalues on
the occupied part of the diagonal, and zero everywhere e
The resulting excitation energies are those given by the w
known Koopmans’s theorem.12 The contents of the EKT
method are now reasonably clear. The method consists
quasiparticlelike ansatz for the wave function of theN21
particle system, which is used to calculate the ionization
ergies of the system. Electron correlations are included,
no allowance is made for relaxation of the other orbitals
the presence of the excitation. Although this relaxation c
be important in small systems, it is expected to be much
important for excitations in extended systems such as
silicon crystal studied here.

2. Conduction-band energies

An analogous theory exists for the conduction-band en
gies. The wave function for theN11 electron system is
approximated by the ansatz of adding an orbital tocN:

cN11~r0 , . . . ,rN!5Âuc~r0!cN~r1 , . . . ,rN!, ~16!

whereÂ is the antisymmetrizer and the orbitaluc is to be
determined variationally. In second quantization we have

ucN11&5Ôc
†ucN&. ~17!

The excitation energiesec are defined by

ec5
^cNuÔc@Ĥ,Ôc

†#ucN&

^cNuÔcÔc
†ucN&

. ~18!

Expanding in a set of orbitals givesuc(r )5(cicf i(r ) and

Ôc
†5(cicâi

† . The coefficientscic are the solutions of the
secular equation
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~Vc2ecS
c!cc50, ~19!

where the matrix elements areVi j
c 5^cNuâi@Ĥ,â j

†#ucN& and

Si j
c 5^cNuâi â j

†ucN&5d i j 2r i j .
It is instructive to introduce a new potential with matr

elementsVi j 5Vi j
v 1Vi j

c :

Vi j 5E f i~r0!ĥ0f j* ~r0!dr0

1NE f i~r0!f j* ~r0!v~r0 ,r1!

3uc~r1 , . . . ,rN!u2dr0dr1¯drN

2NE f i~r0!f j* ~r1!v~r0 ,r1!c~r0 ,r2 , . . . ,rN!

3c* ~r1 , . . . ,rN!dr0dr1¯drN . ~20!

If we use a HF wave function and expand in a basis of
orbitals,Vi j reduces to a matrix with the HFN-particle ei-
genvalues on the diagonal, and zero everywhere else. In
case one can readily identify the second and third term
Eq. ~20! as, respectively, the Hartree and exchange ter
~Similarly Vi j

c reduces to the HF energy eigenvalues on
unoccupied part of the diagonal.!

3. VMC formulation of the EKT

We accumulate the matrix elements ofVi j
v andVi j , sub-

sequently forming the matrixVi j
c 5Vi j 2Vi j

v . The matrix el-
ementsVi j

v are given by

Vi j
v 5NE f i~r1!f j* ~r 8!

Ĥ1c~r1 , . . . ,rN!

c~r1 , . . . ,rN!

3
c~r 8,r2 ,...,rN!

c~r1 ,...,rN!
uc~r1 , . . . ,rN!u2dr 8dr1¯drN .

~21!

As before, we use the permutation symmetry to write this

Vi j
v 5K (

n51

N E f i* ~rn!f j~r 8!
Ĥnc~r1 , . . . ,rN!

c~r1 , . . . ,rN!

3
c~ ...,r 8,...!

c~ ...,rn ,...!
dr 8L

ucu2
, ~22!

so thatN values are accumulated at each step. The te
contributing toĤnc/c are already available in a VMC ca
culation, allowingVi j

v to be accumulated with virtually no
additional cost beyond that required for the density mat
An analogous VMC formulation for calculatingVi j was
used. The single particle terms,ĥ0 , appearing in the first
term in Eq.~20! are evaluated directly without using Mon
Carlo integration. We found that using Monte Carlo integ
tion for all the terms resulted in a small increase in the va
ance of the matrix elements. Therefore, we prefer to ca
late theĥ0 terms directly. The matrix elementsVi j

v and Vi j

were accumulated at the same time as the elementsr i j . The
full crystal symmetry was again used, which reduces
F

is
in
s.
e

s

s

.

-
i-
-

e

number of matrix elements that must be accumulated
ensures the correct symmetry in the presence of statis
noise.

C. Results for excitation energies

1. Full EKT results

The correlation lengths along the VMC walks forVi j
v and

Vi j were found to be similar to those of the local energy a
density matrix, and the distribution of statistical errors w
similar to that for the density matrix. The elements ofVi j

v and
Vi j

c with the largest statistical errors were the diagonal e
ments. The statistical error bars on these elements are
mated to be60.2 eV.

The matrix equations~13! and~19! were diagonalized us
ing a generalized eigenvalue solver. The ratios of the sta
tical error bars to the mean values were significantly lar
for the diagonal elements ofVi j

v andVi j
c than forr i j . Just as

for the density matrix, small perturbations were applied
estimate the statistical errors in the eigenvalues and eig
vectors. The numerical stability of the diagonalization w
improved by explicitly zeroing elements ofVi j

v and Vi j
c

within statistical error of zero. The accuracy of the eigenv
ues was further verified by gradually increasing the num
of bands in the diagonalization procedure. The valence
low-lying conduction-band energies were stable to with
60.4 eV.

The resulting band energies are given in Table I and
Fig. 3, with the energy at the top of the valence band se
zero. Of thek points computed here, the available expe
mental data~Exp! are limited to theG point. Because of this
we also give empirical pseudopotential~Emp! data43 in Table
I and in Fig. 3, which should provide a good interpolatio
between these data. Results for the Ewald and cutoff in
actions are in good agreement, indicating that the finite s
errors are not significant at the level of statistical accura
obtained here. The energies are in good qualitative ag
ment with the empirical data at allk points except for the
upperS1 valence-band state, and theD28 conduction-band
state. The source of the error is principally the value of
diagonal matrix elements for these states,Vii

v and Vii
c ~see

next section!.
The EKT band energies at theG point are in good agree

ment with the available experimental data, and are also
good agreement with the DMC data from direct calculatio
of the excitation energies.9 The EKT valence-band width o
12.9~6! eV is smaller than the value of 13.6~3! eV obtained
from the DMC calculations and is in good agreement w
the experimental value of 12.5~6! eV. In comparison the HF
data show the well-known overestimation of band gaps
band widths that is due to the neglect of correlation ener
the LDA gives excellent valence band energies while
conduction bands are too low in energy by 0.7–1.0 eV, a
the GW data are in very good agreement with experimen

The EKT is a formulation for the eigenstates of theN
21 andN11 electron systems, while the direct method
aimed at calculating the eigenstates of theN electron system.
The EKT and direct results should therefore differ by t
exciton binding energy, but this energy is small for silico
and cannot be resolved at the level of statistical accur
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TABLE I. Band energies of silicon in eV.

Band

VMC

DMCe HFf LDAg GWh Empi ExpjEKTa EKTb DEKTc DEKTd

G28 4.4 4.5 5.1 5.2 4.6 9.0 3.22 3.89 4.1 4.23,4.
G15 3.8 3.9 4.4 4.4 3.7 8.0 2.51 3.36 3.4 3.40,3.
G258 0.0 0.0 0.0 0.0 0.0 0.0 0.00 0.00 0.0 0.00
G1 212.9 213.1 213.3 213.4 213.6 218.9 211.98 211.95 212.36 212.560.6
L3 4.0 4.7 5.4 5.7 9.0 3.46 4.5
L1 3.0 3.1 3.6 3.6 6.8 1.68 2.5
L3 20.6 21.2 21.3 21.5 21.7 21.01 20.9
L1 25.0 25.0 25.4 25.4 26.3 25.38 25.2
L1 211.6 211.9 212.3 212.5 216.4 210.60 210.6
D28 4.7 4.8 5.7 6.0 7.2 1.88 2.4
D1 2.1 2.3 2.7 3.0 5.5 0.61 1.3
D5 21.7 21.8 22.4 22.5 23.8 22.45 22.5
D28 24.9 24.8 25.5 25.7 27.8 25.01 25.0
D1 211.6 212.0 211.7 212.2 216.0 210.08 210.2
S1 6.4 5.4 6.7 6.1 5.73 6.0
S3 3.4 3.1 4.1 4.0 1.45 2.0
S2 21.1 21.6 21.2 22.0 22.14 22.1
S1 21.8 22.5 21.9 22.5 24.50 24.6
S3 26.1 26.3 26.4 26.8 26.79 26.7
S1 28.9 29.0 29.5 29.8 28.70 28.7

aVMC-EKT energies using the cutoff interactions. The statistical error bars are60.4 eV.
bVMC-EKT energies using the Ewald interactions. The statistical error bars are60.4 eV.
cDiagonal approximation to the VMC-EKT energies using the cutoff interactions. The statistical erro
are60.2 eV.

dDiagonal approximation to the VMC-EKT energies using the Ewald interactions. The statistical erro
are60.2 eV.

eDirect DMC calculations, with statistical error bars of60.2 eV, from Ref. 9.
fReference 42.
gThis work.
hReference 44.
iReference 43.
jFrom the compilation given in Ref. 44.
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obtained. Depending on the application, one would like to
able to choose whether to include excitonic effects, so th
is advantageous to have the different QMC techniques av
able. Clearly further refinement of excited-state QMC me
ods is required, but the results from the EKT and direct
proaches are promising for the study of more stron
correlated systems, for which the LDA andGW methods are
less reliable.

2. Diagonal approximations

If we neglect the off-diagonal element ofVi j
v , Vi j

c , andr i j

then the valence- and conduction-band energies can be
proximated by

e iv
DEKT5

Vii
v

r i i
, e ic

DEKT5
Vii

c

12r i i
, ~23!

where the superscript DEKT denotes the diagonal appr
mation to the EKT. This approximation has been used wit
VMC by Fahyet al.13 to calculate quasihole energies in si
e
it
il-
-
-

y

p-

i-
n

con and by Tanaka14 to calculate quasihole energies in NiO
This approximation has the computational advantage tha
fewer matrix elements are required, and also that the pr
lems of statistical noise are reduced, because the value
only two matrix elements enter the calculation of each ba
energy. However, the results are basis set dependent,
could differ significantly between, for example, a HF a
LDA basis.

If we use a HF wave function and expand in a basis se
HF orbitals then the matricesVi j

v , Vi j
c , andr i j are all diag-

onal, and consequently the full EKT and the DEKT a
equivalent. In general, for correlated wave functions,
DEKT gives neither an upper nor lower bound to the ene
obtained from the full EKT. Comparison with the data fro
the DEKT is also made in Table I. The DEKT values a
close to the full EKT values, including the two cases me
tioned above where the agreement with experiment is p
The DEKT works quite well for the valence bands a
slightly less well for the conduction bands, because the
diagonal matrix elements ofVi j

c coupling the unoccupied
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states are more significant. In similar VMC calculations
silicon using the DEKT and a simulation cell containing
electrons, Fahyet al.13 calculated a valence-band width o
14.5~4! eV, which is larger than both our value of 13.3~2! eV
and the experimental value of 12.5~6! eV. Fahyet al.13 also
obtained occupation numbers of 1.96~4! and 1.92~3! for the
G1 and G258 valence-band states, respectively, which
within error bars of our results of 1.9817~2! and 1.9375~5!.

The scaling with system size of the diagonal approxim
tion is very advantageous compared with direct evaluation
excitation energies. In direct methods, the fractional ene
change due to the promotion of an electron is conside
This energy change is inversely proportional to the num
of electrons in the system, i.e., a ‘‘1/N’’ effect. The precision
of the calculation must therefore be sufficient to resolve
energy change amid the statistical noise. This requireme
very challenging for small band gap materials, as the sys
must also be sufficiently large to approximate the infin
solid. In the DEKT, the band energies are computed dire
as averages over the square of the ground-state wave
tion, rather than as the difference between averages ove
squares of the ground- and excited-state wave functions.
greatly improves the sampling statistics. We have found
the errors inVii

v , Vii
c , and r i i scale as the inverse of th

square root of the number of independent electron confi
rations, independently of the system size. For sufficien

FIG. 3. The band structure of silicon, as computed within
VMC extended Koopmans’s theorem using the cutoff interact
~h! and the Ewald interaction~s!, and within the LDA~3!. The
results for the cutoff interaction are shown with statistical er
bars. The statistical error bars for the Ewald results have been o
ted for clarity, but they are the same size as for the cutoff inte
tion. As a guide to the eye, the empirical pseudopotential dat
Ref. 43 are shown~solid lines!, which are in good agreement wit
the available experimental data.
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large systems, it therefore requires fewer statistically in
pendent samples in the DEKT to obtain excitation energ
to a given statistical accuracy than with direct methods. T
scaling behavior of the full EKT is more difficult to analyz
because we are required to diagonalize noisy matrix eq
tions, where the number of off-diagonal matrix elements
creases as the square of the system size, and where the
certainly statistical correlations between matrix elements

V. CONCLUSIONS

We have calculated the one-body density matrix for
valence electrons of bulk silicon using QMC techniques.

In real space, the VMC and LDA density matrices a
very similar, the greatest differences being due to the diff
ing charge densities in each case. The natural orbitals,
tained by diagonalizing the density matrix, very closely r
semble the LDA orbitals. The occupation numbers of t
natural orbitals differ significantly from the noninteractin
values, reducing linearly with increasing energy for the LD
occupied bands. The occupations are about 3% lower t
the noninteracting value near the top of the valence ba
and above the Fermi level, the occupation numbers
slowly to zero.

A DMC calculation for the ground-state energy of silico
using a trial wave function containing a determinant of na
ral orbitals gives an energy that is almost identical to t
obtained using a determinant of LDA orbitals. This sho
that the quality of the nodal surfaces is almost identical
each case. We used DMC calculations to compare the qu
of the nodal surfaces obtained with LDA and HF orbita
finding that the LDA orbitals gave a slightly lower DMC
energy, indicating that for the system studied the nodal s
face of a determinant of LDA orbitals is slightly better. W
note that a previous DMC study of small silicon cluster4

found that natural orbitals obtained from a multiconfigur
tional Hartree-Fock calculation gave a better nodal surf
than a single determinant of HF orbitals.

We have calculated excitation energies in silicon using
extension of Koopmans’s theorem applicable to correla
wave functions. The Monte Carlo formulation is very simil
to that required to obtain the density matrix. The resulti
band energies are in good agreement with the available
perimental data.

The success of the VMC-EKT relies on a cancellation
errors between the ground- and excited-state energies.
wave functions for the excited states contain the variatio
freedom of the orbitalsuv anduc . This variational freedom
in the orbitals reduces the energy of theN21 and N11
electron states and improves the agreement with experim
In the diagonal approximation to the EKT~DEKT!, the uv
anduc orbitals are fixed and there is no variational freedo
in the excited-state wave functions. We have found that
DEKT works quite well for silicon using LDA orbitals foruv
and uc . The diagonal approximation is exact within H
theory, so that we expect it to be a good approximation
weakly correlated systems.

Greater accuracy could be obtained with more accu
trial functions, or using DMC in the calculation ofVi j

v , Vi j
c ,

and r i j . In comparison with direct methods of calculatin
excitation energies,7–9 the EKT has the advantage that only

n
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it-

c-
of
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single calculation involving the ground state is required
obtain many excitation energies.

The EKT involves assumptions about the nature of
excited-state wave functions, but nevertheless is a prac
method for calculating excitation energies including corre
tion effects for relatively weakly correlated systems. The
agonal approximation to the EKT has a very advantage
scaling with system size compared with direct QMC calc
lations. This scaling thereby allows the study of excitati
a

m

. J
m

C

A

tt.
e
al
-
-
s

-

energies in larger systems with a greater efficiency than
possible with direct techniques.
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