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Unrestricted Hartree-Fock theory of Wigner crystals
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We demonstrate that unrestricted Hartree-Fock theory applied to electrons in a uniform potential has stable
Wigner crystal solutions fors=1.44 in two dimensions and;=4.5 in three dimensions. The correlation
energies of the Wigner crystal phases are considerably smaller than those of the fluid phases at the same
density.

DOI: 10.1103/PhysRevB.68.045107 PACS nunider71.10.Ca, 71.15.Nc, 73.20.Qt

[. INTRODUCTION determinant of single-particle orbitals. Two criteria are re-
quired for a mean-field description of Wigner crystals. In a
Wignet first predicted that a system of electrons in aWigner crystal the electrons are localized individually, not in
uniform potential would crystallize at low densities. Local- up- and down-spin pairs. To describe this situation we must
izing electrons around lattice sites increases their kinetic erkise a mean-field theory in which the potentials felt by the up-
ergy, but at sufficiently low densities the reduction in inter-and down-spin orbitals are different. The second issue is that
action energy is always greater. The Wigner crystal remains 80me theories, such as standard implementations of density
theoretical prediction in three dimensiof@D), but in 2D  functional theory, suffer from a spurious effect whereby the
Wigner crystals have been created on a liquid heliunelectrons interact with themselves, giving a “self-
surfacé and at the interface between two semiconductdrs. interaction” error. The energy lowering on crystallization de-
It has been suggested that electrons forming a Wigner crystéives from the reduction of the interaction energy by spatially
might eventually be used as quantum Bisbits in a quan- ~ separating the electrons. A theory which suffers from self-
tum computer® interaction will tend to overestimate the interaction energy of
The widely studied model system of electrons in a uni-separated electrons, destabilizing Wigner crystahe un-
form potential has yielded many insights into electronicrestricted Hartree-FockdF) theory used here is free of self-
many-body phenomena. The most accurate calculations pepteractions and the single-particle orbitals for up and down
formed to date for the zero-temperature ground-state phasépins may have different spatial variations, allowing a de-
of this system have used the diffusion quantum Monte Carl@cription of magnetic states and localized electrons.
(DMC) method’® A Wigner crystal may also be described as
a vibrating lattice of electrons. When harmonic phonon vi-
brations and anharmonic terms are included the resulting en-
ergies are very similar to DMC onés recent Hartree-Fock For our 2D calculations we wrote a Hartree-Fock code
study of small numbers of electrons confined by an externalvhich uses a plane-wave basis set. We considered square and
potential revealed a transition from a Fermi fluid to a Wignerhexagonal lattices with one electron per primitive cell for
molecule staté’ In this paper we also employ the Hartree- fully polarized systems and two electrons per primitive cell
Fock approximation which gives a description of Wignerfor unpolarized systems. Basis sets consisting of about 20
crystals in terms of Einstein oscillators, but including anhar-plane waves per electron were sufficient to give excellent

Il. 2D HF CALCULATIONS

monic and exchange effects. convergence for <10, while 40 plane waves per electron
Within Hartree-Fock theory the paramagnetimpolar-  were required for largers. Highly converged Brillouin-zone
ized) fluid phase is unstable to the ferromagnéfidly po- integrations were performed using 169 evenly spaced wave

larized fluid for values of the density parameter(Ref. 1)  vectors for the square and ferromagnetic hexagonal lattices
greater than 2.01 in 2D and greater than 5.45 in 3D. Hartreeand 153 wave vectors for the antiferromagnetic hexagonal
Fock theory also predicts that the paramagnetic fluid is uniattice.
stable to the formation of a spin density wa¥elhe intro- We found stable Wigner crystal solutions fog=1.44.
duction of electron correlation changes the pictureFigure 1 shows the electron density of the 2D ferromagnetic
dramatically, with the instability of the paramagnetic to thehexagonal Wigner crystal at= 10, clearly showing the hex-
ferromagnetic fluid being shifted to=26 in 2D while in  agonal lattice. The ratio of the maximum to minimum charge
3D a second-order transition to a partially polarized fluid isdensities is 13 for this crystal and 17 for the corresponding
predicted to occur at;=50.1* The spin-density-wave insta- antiferromagnetic hexagonal crystal.
bility may be entirely eliminated. DMC calculations also pre-  Figure 2 shows the maximally localized Wannier func-
dict the occurrence of Wigner crystal phases fQr-35  tions centered on neighboring sites of the antiferromagnetic
(Refs. 15 and 16in 2D andr,>65-100 in 3D(Refs. 7  Wigner crystals ats=10. The overlap of the Wannier func-
and 17. tions is small, indicating that the electrons are kept far apart.
Within a mean-field theory of electron systems the inter-Note also that the parallel-spin Wannier functions have os-
actions are replaced by a potential which acts on each elecillations which maintain their orthogonality.
tron orbital separately. The wave function is then simply a Figure 3 shows the Hartree-Fock energies of various 2D
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FIG. 1. Hartree-Fock charge densigrbitrary unitg of the 2D

ferromagnetic hexagonal Wigner crystalrat 10.
FIG. 3. (Color) Hartree-Fock energies in a.u. per electron of the

phases as a function of. The data show a first-order tran- unpolarized(solid) and fully polarized(dashedl 2D phases as a
sition from the paramagnetic fluid phase to the antiferromagfunction ofr for the squardred) and hexagonablue) lattices and
netic square Wigner crystal at=1.44 and another first- for the fluid phasegblack. For clarity of presentation we have
order transition at,=2.60 to the ferromagnetic hexagonal subtracted the Madelung energy of the hexagonal latiGe=
crystal, which remains the most stable phase up to the high=1-1061f, and multiplied by,

est density studied of;=100. The ferromagnetic fluid phase _ _
is predicted to be unstable at all densities. bce Wigner crystal at ;=4.4, then to the ferromagnetic fcc

Wigner crystal atrg=9.5, and finally to the ferromagnetic
bcce crystal at ;=13.3, which remains the most stable phase
IIl. 3D HF CALCULATIONS up to the highest density studied f=100. The ferromag-
We considered body-centered-cubibcd and face- netic fluid is predicted to be unstable at all densities. We also

centered-cubidfcc) lattices with one electron per primitive found a second region (95 <9.7) where the ferromag-
cell for fully polarized systems and two electrons per primi-N€tic bee crystal is extremely close to stability, but the reso-
tive cell for unpolarized systems. For our 3D calculations weution of our data is insufficient to confirm whether it is
used thecRYSTAL (Ref. 18 Gaussian basis set code. We actually stat_)le in this density range. Note that I-_|artree-Fock
tested many Gaussian basis sets for the different systemidl€ory predicts(incorrectly that the electron fluid should
carefully optimizing the Gaussian exponents in each Casé:_rystglhze at the average valence charge densities of the
Forr¢>15 we found no improvement beyond using a singleheavier alkali metals K, Rb, and Cs.
s function on each site. Farg<15 we obtained some im-
provements from using several functions on each site and our IV. BROKEN SYMMETRY SOLUTIONS
best basis set at these densities consisted of thitaections
and ap function on each site. We found thak®x 8 wave-
vector grids for two-electron unit cells were sufficient to give
excellent convergence of the Brillouin-zone integrations.
We found Wigner crystal solutions forg=4.4. The
Hartree-Fock energie§rig. 4) show first-order transitions
from the paramagnetic fluid phase to the antiferromagnetic

The Hartree-Fock solutions break the translational invari-
ance of the many-body Hamiltonian. There is an infinite
number of degenerate solutions corresponding to arbitrary
translations and rotations, but our calculations pick out a
particular translational and rotational state. Using a unit cell

0.1

FIG. 4. (Color) Hartree-Fock energies in a.u. per electron of the
FIG. 2. Maximally localized Wannier functions for the 2D anti- unpolarized(solid) and fully polarized(dashed 3D phases as a
ferromagnetic hexagonal Wigner crystakat 10 along a line join-  function of r¢ for the bcc(red and fcc(blue) lattices and for the
ing two opposite-spin nearest neighbddashed ling and joining  fluid phasegblack. For clarity of presentation we have subtracted
two parallel-spin nearest neighborsolid line). The nearest- the Madelung energy of the bcc latticEy, = —0.89593/, and

neighbor distance ia. multiplied by r’2.
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FIG. 5. The HF single-particle band g&f, of Wigner crystals
in a.u. as a function aofg. For 1.44<r<2.6 the gap of the square
antiferromagnetic crystal is plotted, while fog>2.6 the gap of the
ferromagnetic hexagonal crystal is plotted.

FIG. 6. The ratios of the correlation energies of the 2D hexago-
nal crystal and ferromagnetic fluid phageslid line) and of the 3D
bcce crystal and ferromagnetic fluid phagdashed lingas a func-
tion of rg.

removes the rotational degree of freedom and for the 3|%rp/stal. The energies of the Fermi fluid and Wigner crystal

calculations the Gaussian basis set removes the translatione}1ases are known accurately from DMC calculatiohs,”

bantoutar Gansiational states. which depend on the. starting!’? (Nerefore we may determine the correlation energies of
P ’ P the different phases. In Fig. 6 we plot the ratig Y= efid)

point of the iterative solution of the equations, but if we . crystal ; .

artificially translate the final self-consistent solution, we find@S & function of s, whereec**"is the correlation ener%/dof

that the energy only changes by of order the calculationain® crystal phaséhexagonal in 2D and bcc in 3@andec

precision (~10 26 a.u. per electron Our calculations there- 1S the correlation energy of the ferromagnetic fluid phase.

fore lead to broken symmetry solutions which representThe energy differences between the ferromagnetic and anti-

“pinned” Wigner crystals. In experiments pinning of Wigner ferromagnetic crystals are negligible at these densitiég-

crystals may arise from the presence of impurities or bound!r® 6 shows that the correlation energy of the crystalline

aries, and therefore our broken symmetry solutions ar@hase is much smaller than in the fluid in both 2D and 3D.

physically meaningful. Hartree-Fock th_eory the_refore tends to favor the crystalh_ne
The broken symmetry Wigner crystals described byPhases, which it describes more faithfully than the fluid

Hartree-Fock theory have band gaps for single-electron exahases. .

citations. Band gaps of the lowest-energy phases of the 2D The strength of correlations in a system may be measured

system are shown in Fig. 5 as a function raf. For rq by the ratio of the correlation energy to the total energy,

<1.44 the unpolarized fluid with zero gap has the lowes€c/E. The DMC results in both 2D and 3D indicate that in

energy within HF theory. For 1.44r,<2.6 the gap of the the fluid phasese./E tends to a positive constant ag

square antiferromagnetic crystal is plotted, andrfgr2.6 ~ — 2, but for Wigner crystale./E tends to zero as;—o.

the gap of the ferromagnetic hexagonal crystal is plotted. At this sense one may think of the Wigner crystal as being a

smallr, the band gaps of the crystalline phases rise steeplj€2Kly correlated system at low densities.

with increasingrs. On further increase afs the band gaps

reach maximum values and then slowly decrease. The HF

band gap of the ferromagnetic hexagonal crystal at the den- VI. ENERGETICS OF WIGNER CRYSTALS

sity of the transition from the fluid to crystal phases pre- The pasic mechanism for electron crystallization within

dicted by DMC[rs=35 (Refs. 15 and 18 is 0.0303 a.u. Hartree-Fock theory is that proposed by Wigner; i.e., at suf-

=0.825 eV, which is expected to be a considerablesiciently low densities crystallization greatly reduces the in-
overestimate of the true value as correlation effects normallyeraction energy with only a small increase in the kinetic

reduce band gaps. energy. The problem can be analyzed more deeply in terms
of the Hartree and exchange terms provided by our calcula-
V. CORRELATION ENERGY OF WIGNER CRYSTALS tions. In Hartree-Fock theory one normally defines the Har-

tree energy and potential to include the unphysical self-

Hartree-Fock theory gives the single-determinant approxiinteraction, which, however, exactly cancels the self-
mation to the many-body wave function with the lowest pos-exchange. In Wigner crystals the self-interaction terms are
sible energy, which is always greater tham equal t9 the  very large and therefore it is more illuminating to discuss the
exact energy. We define the correlation eneegyo be the Hartree and exchange terms with the unphysical self-
difference between the exact and unrestricted Hartree-Fodkteractions removed. From this viewpoint the essential
energies. The correlation energy is normally defined as thphysics of the Wigner crystal is that the electrons are kept
difference between the exact and restricted Hartree-Fock empart by the Hartree potential. Exchange effects are small in
ergies, but this is not appropriate for Wigner crystals becaus@/igner crystals at low densities. The single-particle orbitals
restricted Hartree-Fock theory cannot describe a Wigneobtained at the Hartree-Fock level for a Wigner crystal al-
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ready keep the electrons well separated, and therefore thammagnetism, and therefore the antiferromagnetic bcc lattice
correlation energies are small. becomes more stable at higher densities. At the very highest
As Wigner argued,at low densities the kinetic energy is densities the need to reduce the kinetic energy becomes para-
unimportant and the many-body wave function of a Wignermount and the crystalline phases become unstable to the for-
crystal is expected to have a large weight for configurationsnation of paramagnetic fluids. This simple picture explains
in which the electrons lie far apart on a lattice. The latticethe occurrence of the different stable phases as a function of
adopted should therefore have the lowest Madelung electradensity.
static energy—i.e., the hexagonal lattice in 2D and the bcc
lattice in 3D. At higher densities the kinetic energy becomes
important in determining the structure of the crystal. There
are two factors which control the kinetic energy of Wigner  Although Hartree-Fock theory gives a rather approximate
crystals. First, crystal structures with larger packing fractionsdescription of the electron-electron interaction, we believe it
have lower kinetic energies because they allow the electrois important to understand how different levels of theory de-
orbitals to spread out over a greater volufoe area in 20 scribe such an important model system as electrons in a uni-
without overlap. Second, the kinetic energy of an antiferroform potential. There are, of course, important corrections to
magnet tends to be lower than that of the corresponding feiHartree-Fock theory due to electron correlations. The main
romagnet because in the antiferromagnet the Wannier funeffect of adding correlations is to lower the energies of the
tions on neighboring sites need not be orthogonal andluid phases more than the crystalline ones, which moves the
therefore they can overlap without oscillation, which reducegransitions to crystalline phases to lower densities. DMC cal-
the kinetic energy. culations show that only the 2D hexagonal and 3D bcc
The relative stabilities of the phases are controlled by thaVigner crystals are stable when electron correlations are in-
competition between the kinetic and potential energy termscluded. In both 2D and 3D Hartree-Fock theory predicts the
A detailed study of the numerical values of these terms resame stable low-density phases as DMC, which is a further
veals the following simple picture. In both 2D and 3D the indication that Hartree-Fock theory provides a simple and
low-density stable phase has the structure with the lowesiseful framework for understanding Wigner crystals.
Madelung energy—i.e., the hexagonal and bcc phases, re- We have shown that unrestricted Hartree-Fock theory is
spectively. The dominant effect at low densities is thereforeable to describe Wigner crystals in 2D and 3D. We believe
the Madelung energy, as proposed by Wigner, and ferromaghis to be important for four reasond) It leads to a picture
netism is slightly favored because of the larger exchangef Wigner crystals as phases with small correlation energies.
interactions. The kinetic energy becomes more important at2) It gives simple physical insights into the competition be-
higher densities, and lattices with higher packing fractiongween kinetic and potential energy terms which determines
are favored. In 2D the hexagonal crystal has the largest packhe stability of different phase$3) Hartree-Fock theory is
ing fraction and so the stable phase remains unchanged, biairly accurate for Wigner crystals, and because it is compu-
in 3D the fcc crystal has the largest packing fraction, andationally inexpensive, it may be used to describe Wigner
therefore the ferromagnetic fcc crystal becomes the moatrystals in more complicated situations, such as when defects
stable. At still higher densities the reduction in kinetic energyor external fields are present or when atomistic effects are
arising from adopting an antiferromagnetic spin configuraimportant.(4) Hartree-Fock theory forms a natural starting
tion dominates. In 2D the hexagonal lattice frustrates antiferpoint for more accurate descriptions of Wigner crystals, such
romagnetism and therefore a nonfrustrated square lattice bas perturbation theory.
comes more stable. The 2D square lattice with ferromagnetic
order along the rows in one direction but antiferromagnetic
order in the perpendicular direction is calculated to have a
substantially higher energy than the completely antiferro- We thank Gavin Brown for useful discussions. Financial
magnetic lattice at high densities, indicating the importancesupport was provided by the Engineering and Physical Sci-
of the spin ordering. The 3D fcc lattice frustrates antiferro-ences Research CounéUK).

VII. CONCLUSIONS
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