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Three scaling problems

Many atoms

• Expected QMC scaling of CPU time with system size normally stated to be N3.

Is this right, and can we do better than this?

Many protons

• Theoretical arguments suggest CPU time for all-electron DMC scales with atomic
number Z as Z5.5 − Z6.5. Stability problems for heavy atoms. Essentially no
all-electron calculations published for atoms heavier than neon (Z = 10).

What is the scaling in practice? What is the heaviest atom for which it is feasible
to do a DMC calculation? Can we solve the stability problem? Can timestep
errors be brought under control? Are all-electron calculations more accurate than
pseudopotential calculations?

Many processors

• Advent of ‘petascale computing’ - parallel machines with tens or hundreds of
thousands or even millions of processors. Exciting possibilities in this field.

How does QMC CPU time scale with number of processors? Do we need to do to
do anything different algorithmically in order to exploit this new hardware fully?
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Scaling with system size

Important consideration with all electronic structure methods : how does the
computational cost increase as the size of the system N is increased?
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• Coupled cluster theory CCSD(T) probably most competitive quantum chemistry
correlated wave function method, but the standard algorithm has disastrous
scaling! (Recent developments could improve this).

• Great efforts made to write linear-scaling DFT codes over the last decade. Very
difficult problem, but now more or less solved (e.g. ONETEP).
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Basic scaling of QMC

Moving all N electrons once, using delocalized basis (e.g. plane waves)

• Evaluating orbitals (N orbitals expanded in N basis functions at each
of N electron positions): O(N3) (RATE DETERMINING STEP)

• Evaluating electron-electron and electron-ion interactions and Jastrow
factor : O(N2)

• Re-evaluating ratio of new to old Slater determinant (requires storing
and updating the cofactors of the matrix) : ε O(N3)
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Moving all N electrons once, using delocalized basis (e.g. plane waves)

• Evaluating orbitals (N orbitals expanded in N basis functions at each
of N electron positions): O(N3) (RATE DETERMINING STEP)

• Evaluating electron-electron and electron-ion interactions and Jastrow
factor : O(N2)

• Re-evaluating ratio of new to old Slater determinant (requires storing
and updating the cofactors of the matrix) : ε O(N3)

Moving all N electrons once, using localized basis (e.g. Gaussians/blips)

• Number of non-zero basis functions at random point independent of
system size, therefore evaluating orbitals becomes O(N2)

Standard algorithm : C = AN2 + εN3

Current simulations :
ε is very small and currently N ≤ c. 3000 electrons

=⇒ O(N2) to move all electrons once

Can we do any better than this?
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Example of localized basis functions : blips
Expansion in localized spline functions on a uniform grid
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In 3 dimensions there are only 64 non-zero blips for each position r. With plane
waves the number of functions in e.g. silicon is around 100 per atom.

GOOD : Achieved from transformation of wave function expanded in plane waves
with accompanying huge efficiency increase. Localized. Universal.

BAD : Somewhat greedy with memory and disk. Extra step required (blip
transformation of plane wave data file).
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Linear scaling QMC?
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Scaling improvement in QMC simply a matter of
using localized basis sets and localized orbitals.

• Number of non-zero localized basis functions at random point independent of
system size. Not the case with delocalized functions e.g. plane waves.

• Also, if an electron is far enough from the centre of a localized orbital, then we
can assume it to be zero, thereby avoiding a great deal of unnecessary calculation.
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Localized orbitals

• Non-singular linear transformations of the orbitals leave Slater determinants
unchanged. So we can carry out such a transformation to a highly localized set
of functions, truncate the functions so they are zero outside a certain radius and
smoothly interpolate them to zero at a truncation radius.

• When an electron is moved, only a few functions must be evaluated; the others
are zero as the electron is outside their truncation radii. The number of orbitals
to be updated does not increase with system size.
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Localized orbitals

• Non-singular linear transformations of the orbitals leave Slater determinants
unchanged. So we can carry out such a transformation to a highly localized set
of functions, truncate the functions so they are zero outside a certain radius and
smoothly interpolate them to zero at a truncation radius.

• When an electron is moved, only a few functions must be evaluated; the others
are zero as the electron is outside their truncation radii. The number of orbitals
to be updated does not increase with system size.

New algorithm : C = AN +BN2 + εN3

ε is very small ; B is relatively small ; other tricks can improve the N2 and N3

terms =⇒ O(N) to move all electrons once =⇒ linear scaling!

However, we have forgotten something!
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General linear scaling QMC is not possible



General linear scaling QMC is not possible

Stochastic QMC =⇒ mean value ± desired error bar from M statistically
independent samples of local energy.

Variance of mean energy : σ2
run = σ2

M

Total computer time: Trun = MTsample =
σ2Tsample

σ2
run

where Tsample ∝ N + εN2

Sample variance σ2 proportional to number of electrons N (if assume energies of
electrons uncorrelated), σ2

run is fixed (desired error bar), Tsample is proportional to
N (say) thus overall Trun proportional to N2 to maintain desired error bar =⇒
quadratic scaling!

Properties of most interest: e.g. defect formation energies, energy barriers, excitation
energies i.e. energy differences which become independent of system size when the
system is large enough. To perform such a calculation we require a statistical error
bar which is independent of system size.

NB : Some properties (e.g. cohesive energies of solids) can be derived from total
energies per atom. Then sample variance still increases linearly, but error bar
decreased by factor of N and thus number of moves required decreases linearly.
Hence total cost independent of the size of the system (even better than linear
scaling!). However, such properties are of limited interest.
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‘Linear scaling’ in CASINO

These algorithms have been implemented in CASINO. We form QMC wave functions
with significant sparsity in the Slater determinant by using highly localized orbitals
instead of the delocalized Bloch orbitals that come out of standard band calculations.
Use localized blip or Gaussian basis. That’s it.
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Linear scaling QMC fallacy No. 1 - paper titles

Linear scaling quantum Monte Carlo calculations, Williamson et al. (2001).

Linear scaling quantum Monte Carlo technique with non-orthogonal localized
orbitals, Alfè and Gillan (2004).

Linear scaling for the local energy in quantum Monte Carlo, Manten and Lüchow
(2003).

• Memory requirement scales linearly.

• Time to do one MC move and calculate local energy once scales linearly.

• But need to do many MC moves - in fact an increasing number of them as the
system size increases if you want to keep the error bar the same. Time taken to
calculate the local energy to a given error bar thus scales as the square of the
system size, so according to all previously established conventions, it should be
called quadratic scaling quantum Monte Carlo.

Thus only Manten alludes to this in his choice of title.



Linear scaling QMC fallacy No. 1 - paper titles

Linear scaling quantum Monte Carlo calculations, Williamson et al. (2001).

Linear scaling quantum Monte Carlo technique with non-orthogonal localized
orbitals, Alfè and Gillan (2004).

Linear scaling for the local energy in quantum Monte Carlo, Manten and Lüchow
(2003).

• Memory requirement scales linearly.

• Time to do one MC move and calculate local energy once scales linearly.

• But need to do many MC moves - in fact an increasing number of them as the
system size increases if you want to keep the error bar the same. Time taken to
calculate the local energy to a given error bar thus scales as the square of the
system size, so according to all previously established conventions, it should be
called quadratic scaling quantum Monte Carlo.

Thus only Manten alludes to this in his choice of title.

”I think you know the answer to that, Mike. Because it sounds cool.”

A.J. Williamson, Leiden conference, 2004
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Linear scaling QMC fallacy No. 2
The necessity of splines

Misleading figure from Williamson paper

Fails to mention that curves marked ‘Gaussian’ and ‘Plane Wave’ (which are
basis sets) are produced with delocalized orbitals whereas his curve marked ‘MLW’
(Maximally Localized Wannier function - a kind of orbital) is done with localized
orbitals in addition to his localized spline basis set.

In fact Gaussians have the potential to be just as effective a representation as
splines/blips in ‘linear scaling QMC’ calculations!
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How to produce localized orbitals

• Calculate orthogonal extended Bloch orbitals in the usual way with your DFT
program. Form appropriate linear combinations to produce orbitals localized
according to some criterion.

φm(r) =

M∑
n=1

cmnψn(r), m = 1, 2, . . . ,M

det |φm(ri)| = det |cmn| · det |ψn(ri)|

• Determinant unchanged apart from constant factor det |cmn|, therefore total
energy unchanged in QMC.

• If the transformation matrix is unitary, then the resulting orbitals remain
orthogonal. If it isn’t, then they are nonorthogonal. Whichever - the above
property of determinants is true. Therefore we can use nonorthogonal orbitals in
QMC.

• Additional freedom gained by dispensing with orthogonality can be exploited to
improve the localization of the orbitals.
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Orthogonal vs. non-orthogonal

Comparison of orthogonal (left) and non-orthogonal (right) maximally localized
orbitals for C-C σ bond in benzene C6H6. The non-orthogonal orbitals are more
localized and more transferable since the extended wiggles in the orthogonal functions
depend in detail upon the neighbouring atoms.
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Alfè/Gillan localization

• Choose some region of arbitrary shape contained within the unit cell. Want to
find the combination φ(r) =

∑M
n=1 cnψn(r) such that φ(r) is maximally localized

in this region.

• Can vary the cn to maximize the localization weight P :

P =

∫
region

|φ(r)|2 dr∫
cell
|φ(r)|2 dr

=

∑
m,n c

∗
mA

region
mn cn∑

m,n c
∗
MA

cell
mncn

where

AΩ
mn =

∫
Ω

ψ∗
mψn dr

Then P takes its maximum value when the cn are the components of the eigenvector
associated with the largest eigenvalue λ1 of the generalized eigenvalue equation∑

n

Aregion
mn cn = λα

∑
n

Acell
mncn

and this maximum P is equal to λ1.

[J. Phys.: Cond. Mat 16, L305 (2004)]
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Reboredo-Williamson localization

Optimized nonorthogonal localized orbitals
for linear scaling QMC calculations

Phys. Rev. B 71, 121105 (2005)

Turns out to be essentially the same thing as Alfè, though possibly less clearly explained.
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Cutting things off
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• To get any benefit from localized orbitals, need to decide on truncation radius
outside of which they are taken to be exactly zero. Then we don’t need to do
any work to calculate the orbital if electron is further away than this.

• Then need to decide how to cut off the orbital. Can cutoff abruptly, or can bring
the orbital smoothly to zero over some truncation region by multiplying by an
appropriate function. One might initially think the latter is more sensible.

– Typeset by FoilTEX – 17



Laplacian of truncated orbitals in silane
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Smooth truncation leads to large unphysical peaks in the local kinetic energy in the
truncation region!
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Cutoff conclusions

• Abrupt truncation gives stable DMC simulations, low variances and energies
similar to those of untruncated orbitals. However, it suffers from a theoretical
drawback: the gradients and Laplacians of the orbitals contain Dirac delta
functions, which are not sampled in QMC, thereby invalidating the variational
principles usually satisfied by the VMC and DMC energies. The bias due to this
is however extremely small, and can be made arbitrarily small by increasing the
cutoff radius.

• Various smooth truncation schemes have been tried, but none perform as well as
abrupt truncation. All such schemes produce large, unphysical peaks in the local
kinetic energy in the truncation region. And as we have introduced a new small
length scale into the problem (the skin thickness) that is much smaller than the
physically reasonable timestep, DMC gives a large time step bias and frequent
population-explosion catastrophes.

It is therefore recommended that localised orbitals be truncated abruptly.

• If the truncation radii of the orbitals are sufficiently large, the bias due to abrupt
truncation is much less than the statistical error. The bias in the kinetic energy
is given approximately by the change in the sum of the orbital kinetic energies
upon truncation, allowing an estimate to be made of this bias; the bias in the
total energy is smaller than this.
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Improved scaling calculations in CASINO

How to do this in practice

• Currently must start with plane-wave
DFT calculation to generate the
trial wave function (Gaussians to be
implemented..).

• Linear transformation of Bloch
orbitals to localized orbitals with
LOCALIZER utility (implements
Gillan/Alfè method). Can skip this
step if desired.

• Re-expand localized orbitals in blips
rather than plane waves using BLIP
utility.

• Final bwfn.data files contains
localized orbital/localized basis
representation. Use normally in
CASINO with atom basis type=
blip.
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Generation of localized orbitals - details

• The localizer utility requires a pwfn.data file holding the Bloch orbitals
represented in a plane-wave basis and a centres.dat file of format:

Number of localization centres

N

Display coefficients of linear transformation (0=NO; 1=YES)

0

Use spherical (1) or parallelepiped (2) localization regions

1

x,y & z coords of centres ; radius ; no. orbs on centre (up & dn spin)

<pos(1,1)> <pos(2,1)> <pos(3,1)> <radius(1)> <norbs_up(1)> <norbs_dn(1)>

...

<pos(1,N)> <pos(2,N)> <pos(3,N)> <radius(N)> <norbs_up(N)> <norbs_dn(N)>

• Choice of localization centres requires some chemical intuition - see discussion
in Alfè and Gillan. Optimization of localization centres is possible and will be
implemented shortly.

• Orbitals will become linearly dependent as two centres approach one another.
In limit that two centres located in same place, the orbitals localized on those
centres will be identical, so define instead a single centre and increase number of
orbitals localized on that centre.

• localizer only works for Bloch orbs at Γ (not serious restriction in large
systems).
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Generation of blip representation - details

• The blip utility converts pwfn.data (plane-wave) files to bwfn.data (blip)
files. casino should both run faster and scale better with system size with
blips than with plane-waves. Blips can require a lot of memory and disk space,
however. The gain in speed with respect to plane waves should be of the order
of number of plane waves/64. This is clearly a good thing.

• Improve quality of blip expansion (i.e. fineness of blip grid) by increasing grid
multiplicity xmul. This gives more blip coeffs and thus needs more memory, but
CPU time should not change. For accurate work, one may want to experiment
with xmul greater than 1.0. However, it might be more efficient to keep the grid
multiplicity to 1.0 and increase the plane wave cutoff instead.

• blip asks if overlap test is required i.e. sample the wave function, Laplacian and
gradient at large no. of random points in simulation cell and compute overlap α
of blip orbitals with original plane-wave orbitals:

α =
〈BW |PW 〉√

〈BW |BW 〉 〈PW |PW 〉

The closer α is to 1, the better the blip representation. By increasing xmul or
the plane-wave cutoff one can make α as close to 1 as desired.

• blip will ask you whether you wish to calculate the orbital KE in PW and blip
representations. Obviously these should agree closely.

– Typeset by FoilTEX – 22



Generation of blip representation of localized orbitals - details

• Can also use blip to generate truncated blip representation of localized orbitals.
Need transformed pwfn.data and same centers.dat file that was used as input
to localizer. If latter not present then orbitals will be represented by blip grid
that spans the entire simulation cell.

• If you want to truncate the orbitals add the following two lines to the end of
centers.dat:

Minimum skin thickness (a.u.)

0.d0

For each state CASINO takes requested localization region, adds minimum skin
thickness, then choose smallest parallelogram-shaped subgrid of blip grid points
that contains this sphere. Then choose skin thickness to be such that the sphere
just touches one or more sides of the paralleliped. The requested localization
radius (excluding the skin thickness) is referred to as the inner truncation radius
and the localization radius (including the actual skin thickness) is referred to as
the outer truncation radius.

• In subsequent QMC calculation, if input keyword bsmooth is T then the orbital is
brought smoothly to zero between these radii. If bsmooth is F (recommended)
then abrupt truncation of the orbital occurs at the outer truncation radius.
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All-electron QMC - scaling with atomic number Z

The cost of all-electron QMC calculation increases rapidly with atomic number -
somewhere between Z5.5 (Ceperley 1988) and Z6.5 (Hammond 1987) according to
best theoretical estimates.
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All-electron QMC - scaling with atomic number Z

The cost of all-electron QMC calculation increases rapidly with atomic number -
somewhere between Z5.5 (Ceperley 1988) and Z6.5 (Hammond 1987) according to
best theoretical estimates.

Why so much?Very roughly :

• Usual N3 scaling with system size (N = Z for neutral atom - see later)

• Increasing Z leads to shorter length scale variations in the wave function in the
core region (‘narrower orbitals’). The RMS distance diffused by an electron in a
single move must be less than this length scale to avoid large timestep errors.
The use of shorter time steps results in serial correlation over more (proportional
to Z2) moves - since the length scale for ‘valence electrons’ is much larger and
essentially independent of Z.

Other potential problem : fluctuations in the local energy could be large near nucleus
because kinetic and potential energy terms terms diverge there (with opposite signs).
Clearly worse for heavier atoms.

If time step too large get unacceptable bias in the results, and virtually inevitable
‘catastrophic behaviour’ in DMC.
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DMC stability and catastrophes

As an example, here is a persistent electron catastrophe (increase DMC time step a
lot to make it likely to see this. Combination of electron very close to nucleus with
divergent local energy, with low probability of acceptance for moving away). Shift in
ET stabilizes it (and any copies). Fixed negative contribution to EL until random
fluctuation removes the persistent electron!
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Fix the cusp!

Cusp conditions prescribe the proper derivative discontinuities at the particle collision
points, and ensure the divergence in the local potential is cancelled by an opposite
divergence in the local kinetic energy.

• Electron-nuclear : e.g. H atom has cusp at origin : Ψ(r) = exp (−Zr)

• Electron-electron : conditions on Slater-Jastrow Ψ = D exp(−u)

∂u

∂r

∣∣∣∣
r=0

= −1

2
antiparallel spins

∂u

∂r

∣∣∣∣
r=0

= −1

4
parallel spins

• Can therefore enforce electron-electron cusp conditions by imposing constraints
on the Jastrow factor, but what about electron-nuclear?
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Cusp conditions for the orbitals

• Can imitate cusp by including very narrow Gaussians (i.e. with very high
exponents) in the basis sets.

• Behaviour still incorrect in small region around nucleus. Can fix by chopping out
part of the wave function in that region, and replacing with a polynomial that
obeys suitable constraints (i.e. continuous first three derivatives at the join ;
obey cusp condition ; choose φ(0) to minimize fluctuations in one-electron local
energy inside cusp radius).
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Effective one-electron local energy in ClF
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Fluctuations: VMC for CO molecule

• How well do the polynomial cusp corrections work for a bog-standard off-the-shelf quantum

chemistry Gaussian basis set which doesn’t even try to imitate the cusp?
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Results for noble gas atoms : He, Ne, Ar, Kr, Xe

atom DMC total energy (au) Exact DMC % corr
helium (Z = 2) -2.903719 ± 0.000002 -2.903724 100%
neon (Z = 10) -128.9231 ± 0.0001 -128.939 96%
argon (Z = 18) -527.4840 ± 0.0002 -527.55 91%
krypton (Z = 36) -2753.7427 ± 0.0006 -2754.13 82%
xenon (Z = 54) -7234.785 ± 0.001 -7235.57 77%
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Scaling of CPU time with Z : He, Ne, Ar, Kr, Xe
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Timestep and nodal errors for Ne and Ne+
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Timestep and nodal errors for Ne 1st ionization potential
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Parallel computing
Simultaneous calculations performed by multiple processors

From the mid-1980s until 2004 computers got

faster because of frequency scaling (more GHz).

However, faster chips consume more power, and

ever since power consumption (and consequently

heat generation) became a significant concern,

parallel computing has become the dominant

paradigm in computer architecture, particularly

with the advent of multicore processors - present

even in most TTI laptops.

• We do not pretend that QMC is the cheapest technique in the world. Thus the study of anything

other than simple systems inevitably requires the use of parallel computers.

• The biggest machines in the world now have more than a million processors. Some techniques

(such as DFT) have difficulty exploiting more than a thousand processors because of the large

amount of interprocessor communication required. This leads to our third scaling question:

How does QMC scale with the number of processors?

And consequently, how many processors can we successfully exploit?
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Increasing complexity and new terminology: CPUs

AMD quad-core processor

In the old days (when we originally wrote CASINO) parallel

machines were quite ‘simple’ things. That is, each computing

unit (usually referred to as a ‘node’ or a ‘processor’) ran a

separate copy of the program, and each had its own local

memory.

Nowadays, things are more complex. A computer may have

multiple nodes. And those nodes contain multiple sockets.

And the processors in those sockets contain multiple (CPU)

cores. The memory architecture is also more complex.

Node: a printed circuit board of some type, manufactured with multiple empty sockets into which

one may plug one of a family of processors.

Processor: this is the object manufactured e.g. by Intel or AMD. Generally there are ‘families’

of processors whose members have differing core counts, a wide range of frequencies and different

memory cache structures. One cannot buy anything smaller than a processor.

Core: the cores within the processor perform the actual mathematical computations. A core can do

a certain number (typically 4) of FLOPs or FLoating-point OPerations every time its internal clock

ticks. These clock ticks are called cycles and measured in Hertz (Hz). Thus a 2.5-GHz processor

ticking 2.5 billion times per second and capable of performing 4 FLOPs each tick is rated with a

theoretical performance of 10 billion FLOPs per second or 10 GFLOPS.
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Increasing complexity and new terminology: memory
In complex modern systems we also need to understand how the memory is accessed.

Distributed memory : each processor has its own local private memory.

Shared memory : memory that may be simultaneously accessed by multiple cores with an intent to

provide communication among them or avoid redundant copies.

Modern machines containing ’compute

nodes’ such as this XT5 often have

a non-uniform memory architecture

(‘NUMA’). That is a processor can

access its own local memory faster than

non-local memory, that is, memory local

to another processor or memory shared

between processors.

Typically we might use shared memory on a ‘compute node’ which is simultaneously and quickly

accessible to all processor cores that are plugged into it. Data is sent between nodes using explicit

MPI commands and - in this case - the slower SeaStar Interconnect.

With casino, shared memory allows one to treat much bigger systems. A particular problem occurs

when using a blip basis; the blip coefficients for a large systems can take up many GB of memory

(and this may exceed the amount locally available to each core). Thus we may have e.g. a node

containing two 6-core processors i.e. 12 cores with a single copy of the blip coefficients in the shared

memory available to all cores on that node.
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State of the art: petascale computers

• A ‘petascale’ system is able to make arithmetic calculations at a sustained rate in
excess of a sizzling 1,000-trillion operations per second (a ‘petaflop’ per second).

• The first computer ever to reach the petascale milestone (in 2008) was the
Roadrunner at Los Alamos shown above. It contained 122400 cores achieving a
peak performance of 1.026 petaflops/s.

• One may consult the ‘Top 500 Supercomputers’ list at www.top500.org to see
who and what is currently winning. Current fastest (June 2014) is Tianhe-2 in
China (Intel Xeon cluster, 3120000 cores, 54.9 petaflops/s).
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A usable example: Titan

Titan is a Cray XK7 machine at Oak Ridge National Laboratory in Tennessee, USA.
It has a peak performance of around 27.1 petaflops/s, and has 560640 AMD Opteron
processor cores, making it the 2nd-fastest computer in the world (June 2014). Like
all the best computers, it runs Linux and supports many Fortran compilers.

It is made of 35,040 XK7 compute nodes. Each such node contains one 16-core
AMD Opteron processor and 32 GB of memory. Each node also has an NVIDIA
Kepler GPU accelerator (codes differ in their ability to take advantage of these).
Titan was the fastest computer in the world until very recently.

ssh -X mdt26@titan.ccs.ornl.gov

cd CASINO ; make Shm

runqmc -p 224256 --shmem=16 --walltime=6h30m
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How is CASINO parallelized?
CASINO’s parallel capabilities are implemented largely with MPI which allows communication

between all cores on the system. A second level of parallelization useful under certain circumstances

(usually when the number of cores is greater than the number of walkers) is implemented using

OpenMP constructs, which functions over small groups of e.g. 2-4 cores.

MPI (Message Passing Interface) is a language-independent API (application programming interface)

specification that allows processes to communicate with one another by sending and receiving

messages. It is a de facto standard for parallel programs running on computer clusters and

supercomputers, where the cost of accessing non-local memory is high.

Example: call MPI Reduce([input data], [output result], [input count],

[input datatype],[reduce function], ROOT, [User communication set], [error code])

By setting the ‘reduce function’ to ‘sum’, such a command may be used - for example - to sum a

vector over all cores, which is required when computing averages.

OpenMP is an API that supports shared-memory multiprocessing. It implements multithreading,

where the master ‘thread’ (a series of instructions executed consecutively) forks a specified number

of slave threads and a task is divided among them. The threads run concurrently, with the runtime

environment allocating threads to different cores. The section of code meant to run in parallel is

marked with a preprocessor directive that causes the threads to form before the section is executed:

!$OMP parallel

· · ·
!$OMP end parallel
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Scaling of QMC with number of processors : VMC

• Perfectly parallel - no interprocessor communication required during simulation.

• Each processor does independent random walk using different random number
sequence - results are averaged at end of each block. Running for time T on
P processors generates same amount of data as running for time TP on one
processor.

• VMC should therefore scale to arbitrarily large number of processors.

– Typeset by FoilTEX – 41



Scaling of QMC with number of processors : optimization

Standard variance minimization

VMC stages perfectly parallel. In optimization, config set distributed between CPUs.
Master broadcasts current set of optimizable parameters. Each CPU calculates local
energy of each of its configs - reports energies (and weights, if required) to master.
CPU time to evaluate local energies usually far exceeds comms time (reporting 1 or
2 numbers per config to master and receiving a few parameters at each iteration).
Time to evaluate local energies increases with system size, whereas comms time
independent of system size. Standard varmin essentially perfectly parallel.

Fast variance minimization for linear Jastrow parameters

VMC stages perfectly parallel. Optimization done on master - typically takes fraction
of a second and is independent of system size. Varmin linjas perfectly parallel.

Energy minimization

VMC stages perfectly parallel. For matrix algebra stages, configs divided evenly
between CPUs, each of which separately generates one section of the full matrices.
Full matrices then gathered on master, which does matrix algebra. Time for matrix
algebra usually insignificant compared to time for VMC and matrix gen. Comms time
typically at most a few percent of time per iteration. Overall, energy minimization
very nearly perfectly parallel.
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Scaling of QMC with number of processors : DMC

• In DMC, config population initially divided evenly between cores. Algorithm
not perfectly parallel since populations fluctuates on each core; iteration time
determined by the core with the largest population. Necessary to even up config
population between cores occasionally (‘load balancing’).

• The best definition of ‘occasionally ’ turns out to be ‘after every move’, since this
minimizes the time taken by the core with the largest number of configurations
to finish propagating its excess population.

• From the CASINO perspective, what is a ‘config’ and how big is it? It is
a list of electron positions, together with some associated wave function- and
energy-related quantites. For the relatively big systems of interest, a config might
be from 1-10kb in size, and up to around five of them might need to be sent
from one processor to another. Thus messages can be up to 50kb in size (though
usually they are much smaller).

• Transferring configs between cores is thus likely to be time-consuming, particularly
for large numbers of cores. Thus there is a trade-off between balancing the load
on each processor and reducing the number of config transfers.
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Formal parallel efficiency

• Cost of propagating all configs in one iteration : TCPU ≈ AN
αNC
P

Here P is number of CPU cores, NC is number of configs, N is number of
particles, and α = 1 (localized orbs and basis) or 2 (delocalized orbs, local basis).
Add 1 to α for trivial orbs/large systems where determinant update dominates.

• Cost of load balancing : Tcomm ≈ B
√
NCPN3

Require TCPU � Tcomm as DMC algorithm perfectly parallel in this limit.

• Ratio of load balancing to config propagation time :

Tcomm

TCPU
=
A

B

P
3
2N

3
2−α

√
NC

- For α > 3/2 (which is true unless time to evaluate localized orbitals dominates),
the fraction of time spent on comms falls off with system size.

- By increasing NC fraction of time spent on comms can be made arbitrarily small,
but, in practice number of configs per core limited by available MEMORY.

- Memory issue is the main problem for very large systems or very large number of
cores, particularly when using a blip basis set.

– Typeset by FoilTEX – 44



Obvious ways to improve load balancing in CASINO

• Increase number of configs per core (without blowing the memory).

• Use weighted DMC (lwdmc keyword) to reduce branching (with the default weight limits of 0.5

and 2.0) and disable transfer or large arrays (such as inverse Slater matrices) between cores by

using the small transfer keyword.

Obvious ways to avoid blowing the memory in CASINO

• On architectures made up of shared memory nodes with multiple cores: allocate blips on these

nodes instead of on each core (make Shm to enable this, then runqmc --shmem).

• Use OpenMP - extra level of parallelization for loops scaling with number of electrons. Define

‘pools’ of small numbers of cores (typically 2-4). Parallelisation over configs maintained over

pools, but inside each pool work for each config is parallelized by splitting the orbitals over pools

(this reduces necessary memory per core). Then, each core in the pool only evaluates the value

of a subset of orbitals. That done, all cores within the pool communicate to construct the Slater

determinants, which are evaluated again in parallel using the cores in the pool. Gives ∼1.5×
speedup on 2 cores, ∼2× speedup on 4 cores.

To use with casino, compile with ‘make OpenMP’, then run with e.g. on a 4-core machine

‘runqmc --nproc=2 --tpp=2’ where tpp means ‘threads per process’. Can also run with both

Shm and OpenMP (make OpenmpShm etc.).

• Use single precision blips keyword, the blip coefficients using single precision real/complex

numbers, which will halve the memory required.
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How does CASINO scale with old standard DMC algorithm?

Scaled ratio of CPU times in DMC statistics accumulation for various numbers of cores on Jaguar

(Titan’s predecessor) using the September 2010 version of CASINO 2.6. System: one H2O molecule

adsorbed on a 2D-periodic graphene sheet containing fifty C atoms per cell. For comparative purposes

‘ideal linear scaling’ (halving of CPU time for double the number of cores) is shown by the solid black

line. Both blue and red lines show results for fixed sample size i.e. number of configs × number

of moves [fixed problem size = ‘strong scaling’]. However, blue line has fixed target population of

100 configs per core (with an appropriately varying number of moves). Red line has fixed target

population of 486000 (and constant number of moves) i.e. the number of configs per core falls with

increasing number of cores (from 750 to around 5).
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New tricks to effectively reduce Tcomm to zero

Rendering the earlier formal analysis somewhat redundant, I discovered last year that
with a few tricks one can effectively eliminate all overhead due to config transfers,
and hence hugely improve the scaling (this is described in Petascale computing
opens new vistas for quantum Monte Carlo’, by me, Mike Gillan and Dario Alfè,
Psi-k Newsletter ‘Scientific Highlight of the Month’ Feb 2011).

The new algorithm involved:

(1) Analysis and modification of the procedure for deciding which configs to send
between which pairs of cores when doing load balancing (the original CASINO
algorithm for this originally scaled linearly with the number of cores – when you
need it to be constant – yet this was never mentioned in formal analyses!).

(2) The use of asynchronous, non-blocking MPI communications.

• To send a message from one processor to another, one normally calls blocking
MPI SEND and MPI RECV routines on a pair of communicating cores. ‘Blocking’
means that all other work will halt until the transfer completes.

• However, one may also use non-blocking MPI calls, which allow cores to continue
doing computations while communication with another core is still pending. On
calling the non-blocking MPI ISEND routine, for example, the function will return
immediately, usually before the data has finished being sent.
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Decisions about config transfers: the redistribution problem

• At the end of every move we have a vector (of length equal to the number of cores) containing

the current population of configs on each core.

• Relative to a ‘target’ population, some cores will have an excess of configs, some will have the

right amount, and some will have a deficit.

• The problem is to arrange for a series of transfers between pairs of cores in the most efficient way

such that each core has as close to the target population as possible. Here ‘efficient’ means the

total number of necessary transfers and the size of those transfers is to be minimized.

OLD ALGORITHM: Requires repeated operations on the entire population vector, asking things like

‘what is the location of the current largest element?’ [Fortran: maxloc(popvector)]. This scales

linearly with the number of cores, and if you’re asking to find the largest element of a vector of

length 1 million and you do it a million times it starts to take some serious time. Any benefit from

obtaining the optimum list of transfers is swamped by the process of finding that optimum list.

MORAL: the algorithm is perfectly reasonable for a routine written in the years when no-one could

run on more than 512 cores; however, such things can come back and bite you in the petascale era.

SOLUTION

• Partition the cores into ‘redist groups’ of default size 500 and contemplate transfers only within

these groups. If e.g. one core has a deficit of 1,2,3,4. . . configs, then in a group of that size it is

highly likely that some other core will have a surfeit of 1,2,3,4.. configs, etc. Thus efficiency in

config transfers will hardly be affected by not considering the full population vector.

• To avoid imbalances developing in the group populations, the list of cores that belong to each

group is changed at every iteration (‘redist shuffle’).
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Non-blocking asynchronous communication
A communication call is said to be non-blocking if it may return before the operation completes

(a local concept on either sender or receiver). A communication is said to be asynchronous if its

execution proceeds at the same time as the execution of the program (a non-local concept).

Mode Command Notes synchronous?

synchronous send MPI SSEND Message goes directly to receiver. synchronous

Only completes when receive begins.

buffered send MPI BSEND Message copied to a ‘buffer’. asynchronous

Always completes regardless of receiver.

standard send MPI SEND Either synchronous or buffered both/hybrid

ready send MPI RSEND Assumes the receiver is ready. neither

Always completes regardless.

receive MPI RECV Completes when a message has arrived

MPI also provides non-blocking send (MPI ISEND) and receive (MPI IRECV) routines. They return

immediately, at the cost of you not being allowed to modify the sent vector/receiving vector until

you execute a later MPI TEST or MPI WAIT call (or MPI TESTALL/MPI WAITALL for multiple

communications) to check completion. In the meantime, the code can do some other work.

• Non-blocking routines allow separation of initiation and completion, and allow for the possibility

of comms and computation overlap. Normally only one comm allowed at a time; non-blocking

functions allow initiation of multiple comms, enabling MPI to progress them simultaneously.

• Non-blocking comms, when used properly, can provide a tremendous performance boost to parallel

applications.
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Non-blocking send operation
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New DMC algorithm
MOVE 1

- Move all currently existing configs forward by one time step

- Compute the multiplicities for each config (the number of copies of each

config to continue in the next move).

- Looking at the current populations of config on each processor, and at the

current multiplicities, decide which configs to send between which pairs of

cores, and how many copies of each are to be created when they reach

their destination.

- Sending cores initiate the sends using non-blocking MPI_ISENDs; receiving

cores initiate the receives using non-blocking MPI_IRECVs. All continue

without waiting for the operations to complete.

- Perform on-site branching (kill or duplicate configs which require it on any

given processor).

MOVE 2 AND SUBSEQUENT MOVES

- Move all currently existing configs on a given processor by one time step (not

including configs which may have been sent to this processor at the end of the

previous move).

- Check that the non-blocking sends and receives have completed (they will

almost certainly have done so) using MPI_WAITALL. When they have, duplicate

newly-arrived configs according to their multiplicities and move by one time

step.

- Compute the multiplicities for each moved config.

- Continue as before
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Any improvement in the load-balancing time?

Number of cores Time, CASINO 2.6 (s.) Time, Modified CASINO (s.)
648 1.00 1.05

1296 3.61 1.27
2592 7.02 1.52
5184 18.80 3.06

10368 37.19 3.79
20736 75.32 1.32
41472 138.96 3.62
82944 283.77 1.04

Table 1: CPU time taken to carry out operations associated with redistribution of
configs between cores in CASINO 2.6 (2010) and in my modified version, during one
twenty-move DMC block for a water molecule adsorbed on a 2d graphene sheet.
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Perfect parallel efficiency..

Scaled ratio of CPU times in DMC statistics accumulation for various numbers of cores on Jaguar

(Titan’s predecessor) using both the September 2010 version of CASINO 2.6 (red line) and a later

public release CASINO 2.8 (blue line). System: one H2O molecule adsorbed on a 2D-periodic

graphene sheet containing fifty C atoms per cell. For comparative purposes ‘ideal linear scaling’

(halving of CPU time for double the number of cores) is shown by the solid black line. In both cases

there is a fixed target population of 100 configs per core (with an appropriately varying number of

moves to maintain constant number of configuration space samples).
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..if you give the processors enough to do

Similar graph for the same number of configuration space samples, but using a fixed target of 486000

for total config population and a fixed number of moves, rather than a fixed target per core.

Note that fixing the total target population can introduce considerable inefficiency at higher core

counts (since cores end up without enough work to do as the number of configs per node decreases).

This graph should not be looked on as representing CASINO’s general scaling behaviour. The

inefficiency can generally be decreased by increasing the number of configs per core.
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Can we push it to more than 100000 cores?

0 20000 40000 60000 80000 1e+05 1.2e+05
Number N of processor cores (JaguarPF)

0

20000

40000

60000

80000

1e+05

1.2e+05

[C
PU

 ti
m

e 
(2

59
2 

co
re

s)
 / 

C
PU

 ti
m

e 
(N

 c
or

es
)]

 *
 2

59
2

Ideal linear scaling
CASINO 2.6
CASINO 2.8

FIXED TARGET POPULATION

PER CORE

Yes! Not even the hint of a slowdown on 124416 cores.. Reasonable to assume we
could use all 299008 cores of the Jaguar machine, if we could be bothered to sit
through the queueing time.
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..and up to 131072 cores on an IBM Blue Gene/P
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..and up to 524288 cores on the Japanese K computer

– Typeset by FoilTEX – 57



How many cores can we exploit?

• Because QMC is a sampling technique then, for any given system, there is a maximum number

of cores you can exploit if you insist that your answer has no less than some required error bar

and that it has a minimum number of moves (so we can reblock the data).

• E.g. we require 1000000 random samples of the wave function configuration space to get the

required error bar ε. Let’s say we need at least 1000 sampling moves to accurately reblock the

results. And let’s say we have a 1000 processor computer. In that case only one config per node

is required to get the error bar ε (even though the available memory may be able to accommodate

many more than this).

• We now buy a 2000 processor machine. How do we exploit it to speedup the calculation? We

can’t decrease the number of moves, since then we can’t reblock. It is wasteful to just run the

calculation anyway, since then the error bar will become smaller than we require. We can split

each config over two nodes, and use OpenMP to halve the time taken to propagate the configs,

but let’s say we find that OpenMP doesn’t really work very well over more than two cores.

• How then do we exploit a 4000 processor machine? Answer - we can’t. The computer is simply

too big for the problem if you don’t need the error bar to be any smaller.
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A problem: including the effects of equilibration time
Important point that we have ignored so far: the DMC equilibration time cannot be reduced towards

zero by using more cores. And when the equilibration time becomes comparable to the statistics

accumulation time (which is reduced by using more cores) our scaling analysis will be affected. Thus:

• In equilibration, the RMS distance diffused by each electron needs to be greater than some

characteristic length. This translates into a requirement for a minimum number of moves (which

obviously depends on the DMC time step τ). In fact, with valence electron density parameter rs:

N
min
equil >

N
2
3
elecr

2
s

3τ

• If you use more processors, with a fixed number of configs per core, the equilibration time will be

independent of processor count (and will be smaller the fewer configs per core you use).

• The time taken to accumulate the data with the required error bar (through M samples of the

configuration space) will go down with increasing core count, with ‘perfect linear scaling’.

Computers like Titan have maximum job times (typically 12 or 24 hours) and a time that you have

to sit in the queue before a job starts. So you can define a (somehwat arbitrary) maximum time that

you are prepared to wait for DMC equilibration to complete. Neil has a nice internal paper, where

he defines this as 4 days, and thus concludes (depressingly) that

(1) It will be difficult to do DMC calculations with more than around 800 electrons (since one has

to equilibrate for days regardless of the size of the computer).

(2) For an 800 electron system, the maximum number of cores worth using is 14400 (when calculating

the total energy of the simulation cell) or er.. 36 (when calculating the energy per atom).
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Cheaper equilibration: the preliminary DMC scheme
With a small config population, equilibration is a small fraction of the total DMC run time. When

running on a large number of cores however, the configuration population is necessarily large, since

each core must have at least one configuration on average; the equilibration time will likely be large.

An alternative procedure which can significantly reduce the expense of equilibration is Neil’s

preliminary DMC scheme (see section 13.10 of the casino manual):

• Instead of using VMC to generate all the Nconf required configs for the DMC calculation, use

VMC to generate a much smaller number of configs N small
conf ( at least 1000 to be large enough

to avoid population control bias).

• Equilibrate the N small
conf configs on some small system without a delay-inducing queueing system.

• Run enough statistics accumulation on the equilibrated N small
conf in order to generate Nconf

independent configs for use in the full DMC calculation. (Can also use the energies of these

configs in the accumulation data..).
Example

Want to do 50000 core calculation, with 2 configs per core - require 100000 equilibrated configs.

Normally use 100000 samples of VMC wave function to provide initial configs to be equilibrated, then in order to equilibrate DMC we need to
run - say - 750 steps on each of the 100000 configs (2 configs per core).

Instead use 1000 samples of VMC wave function on (say) 500 cores (2 configs per core), then run each of those for 750 steps to achieve DMC
equil - 100 times faster than before because I have far fewer configs.Turn on stats accumulation. Run each of the 1000 samples for 100×Tcorr
moves to get 100000 independent samples in total. Takes roughly the same time as equilibration. Thus overall around 50 times faster than
equilibration done on 100000 configs.

Drawback: more costly in human time as one has to run equilibration on small computer then

transfer to Titan or whatever..
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Is non-blocking communication really asynchronous?
Not necessarily! MPI standard doesn’t require non-blocking calls to be asynchronous. Two problems:

(1) Hardware may not support asynchronous communication. Some networks provide communication

co-processors that progress message passing regardless of what application program does (e.g.

Infiniband, Quadrics, Myrinet, Seastar and some forms of TCP that have offload engines on the

NIC). Then communication can be started by the computation processor which in turn gives task of

sending data over the network to the communication processor.

(2) Unfortunately, even if the hardware supports it, people implementing MPI libraries may not bother

to code up truly asynchronous transfers (since the standard allows them not to!). MPI progress is

actually performed within the MPI TEST or MPI WAIT functions. This is cheating!

Test: initiate MPI IRECV with large 80Mb message, then do some computation for a variable amount of time. If comms really do overlap with
computation then total runtime will be constant so long as computation time is smaller than comms time.
Ref: Hager et al. http://blogs.fau.de/hager/files/2011/05/Hager-Paper-CUG11.pdf

If your MPI doesn’t provide true asynchronous progress, then some form of periodic poll through

a MPI TESTALL operation may be required to achive optimal performance. Can also overlap

computation and comms via mixed-mode OpenMP/MPI - use dedicated communication thread.
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The future? GPUs

• A GPU (graphics processing unit) is a specialized processor designed to answer the demands of

real-time high-resolution 3D-graphics compute-intensive tasks (whose development was driven by

rich nerds demanding better games). They are produced by big companies such as Nvidia and

ATI.

• Decent modern GPUs in machines with only a few CPU-cores are engineered to perform hundreds

of computations in parallel. In recent years there has been a trend to use this additional processing

power to perform computations in applications traditionally handled by the CPU.

• Modern GPUs have evolved into highly parallel multicore systems allowing very efficient

manipulation of large blocks of data. This design is more effective than general-purpose

CPUs for algorithms where processing of large blocks of data is done in parallel.

• To do general purpose computing on GPUs, people originally had to ‘pretend’ to be doing

graphics operations and learn things like OpenGL or DirectX (and so very few people bothered).

Nowadays, new architectures such as CUDA allow people to operate GPUs using more familiar

programming languages, and their use is booming.

• In fact, it might be said, that computing is evolving from ‘central processing’ on the CPU to

‘co-processing’ on the CPU and GPU. Of of the top 500 supercomputers in 2014, a total of 62

systems on the list are using accelerator/co-processor technology, up from 53 in 2013, 57 in 2012,

and 39 in 2011). As we have seen, the Titan system is one of them.

The highly parallel nature of Monte Carlo algorithms suggest that CASINO might benefit considerably

from GPU co-processing. However, whenever we have tried it, we have only succeeded in reducing

the speed of the code by an order of magnitude. It only appears to be possible to get any benefit by

doing some sort of ground-up rewrite, which none of us seem prepared to do.
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Programming for Nvidia GPUs: CUDA
CUDA (Compute Unified Device Architecture) is a parallel

computing architecture developed by Nvidia. It is the computing

engine in Nvidia GPUs that is accessible to software developers

through variants of industry-standard programming languages.

Programmers typically use ‘C for CUDA’ (C with Nvidia

extensions and certain restrictions) to code algorithms for

execution on the GPU.

CUDA gives developers access to the virtual instruction set

and memory of the parallel computational elements in CUDA

GPUs so that they become accessible for computation like

CPUs. Unlike CPUs however, GPUs have a parallel throughput

architecture that emphasizes executing many concurrent threads

slowly, rather than executing a single thread very quickly.

CASINO is written in Fortran95, so we would like to code in Fortran directly, rather than the

officially-supported C. Fortunately (see e.g. www.pgroup.com/resources/cudafortran.htm) there

are available third-party solutions such as PGI CUDA Fortran, so one can do things like this:

REAL :: a(m,n) ! a instantiated in host memory

REAL,DEVICE :: adev(m,n) ! adev instantiated in GPU memory

adev = a ! Copy data from a (host) to adev (GPU)

a = adev ! Copy data from adev (GPU) to a (host)

Consider also ‘Accelerator compilers’ which allow you to program GPUs simply by

adding compiler directives to existing Fortran and recompiling with special flags

(www.pgroup.com/resources/accel.htm). Doesn’t work very well yet, in my experience!
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Conclusions

• In general it seems to be the case that, following my modifications, casino is
now linear scaling with the number of cores providing the problem is large enough
to give each core enough work to do.

• This should normally be easy enough to arrange, and if you find yourself unable
to do this, then you don’t need a computer that big.

• One must pay attention to issues related to equilibration time if you want to use
casino for big systems on very large numbers of cores.. Techniques have been
developed to address this question, but further work is required.

• On typical machines like Titan, very large priority is given to jobs using large
numbers of cores (where ‘large’ means greater than around 40000). Being allowed
to use the machine in the first place increasingly means being able to demonstrate
appropriate scaling of the code beforehand. casino can do this; many, even
most, other techniques cannot.

• People need to start rewriting their codes to use GPUs, if they haven’t already.

• Massively parallel machines are now increasingly capable of performing highly
accurate QMC simulations of the properties of materials that are of the greatest
interest scientifically and technologically.
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I don’t have access to a petascale computer (sulk..)

So you have three options:

(1) Don’t do QMC calculations on very big systems.

(2) Wait for 10 years until everyone has a petascale computer under their desk.

(3) Unless you happen to be North Korean or Iranian or otherwise associated with
the Axis of Evil, apply for some time on one. I did. You might consider, for example:

The INCITE program

www.doeleadershipcomputing.org/guide-to-hpc/

The European DEISA program

www.deisa.eu
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Scaling problems : general conclusions

Many atoms

• ‘Linear scaling’ QMC algorithms have been implemented (which scale as the
square of the system size to get the total energy per cell to within a given error
bar, or independently of the system size to get the total energy per atom, but
never linearly.. ). One should therefore describe QMC as ‘quadratic scaling’.

Many protons

• All-electron DMC calculations are stable up to arbitrary atomic number given
patience and a large computer.

• CPU time for fixed error bar seems to scale as ≈ Z5.5 for low atomic numbers
as predicted, but appears to improve to ≈ Z4.5 for heavier atoms. Probable
residual systematic timestep error for core electrons in heavier atoms but this
should cancel in energy differences.

Many processors

• Only DMC not trivially parallelizable. However, recent algorithmic improvements
mean that even DMC now has a perfect linear scaling with the number of cores,
subject to the caveats already mentioned.
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