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Two-Dimensional Homogeneous Electron Gas (I)

• 2D HEG: set of electrons moving in 2D in a uniform, inert, neutralising background.

• Hamiltonian (for finite system):

Ĥ =
∑
i

−1

2
∇2
i +

∑
j>i

vE(rij) +
NvM

2
.

Infinite-system ground-state energy per particle depends only on the density (specified
by radius rs of circle containing one electron on average) and spin polarisation
[ζ = (N↑ −N↓)/N ].

• Physical realisations:

– Electrons on metal surfaces. E.g. Cu [111].
– Electrons on droplets of liquid He.
– Inversion layers in MOS devices. Can easily tune density. Electrons far from

dopants; fewer complications due to disorder; technologically important.
– Electrons in 2D semiconductors (gallium chalcogenides, etc.).



Two-Dimensional Homogeneous Electron Gas (II)

• Quantum Monte Carlo is the most accurate first-principles method available for
studying the ground-state properties of the HEG.

• We have carried out QMC studies of the 2D HEG to determine:

1. The zero-temperature phase diagram.1

2. The pair-correlation function, structure factor and momentum distribution.2

3. The energy band and hence quasiparticle effective mass.3

• Our data are of interest to

– Experimentalists looking for ferromagnetism, Wigner crystallisation and changes to
the effective mass in low-density 2D HEGs.

– Theorists interested in constructing 2D XC functionals for DFT calculations.

1 N. D. Drummond and R. J. Needs, Phys. Rev. Lett. 102, 126402 (2009).
2 N. D. Drummond and R. J. Needs, Phys. Rev. B 79, 085414 (2009).
3 N. D. Drummond and R. J. Needs, Phys. Rev. B 80, 245104 (2009).



Wigner Crystallisation in 2D (I)

• Kinetic energy dominates at high density: form Fermi fluid to minimise it.

• Potential energy dominates at low density: form Wigner crystal to minimise it.

• Wigner crystals have been observed on the surface of liquid helium4 and in inversion
layers in MOSFET devices5.

• Previous QMC studies6 indicate that fluid–crystal transition occurs somewhere
between rs = 25 and 40 a.u. at zero temperature.

• Can we be more precise?

4 C. C. Grimes and G. Adams, Phys. Rev. Lett. 42, 795 (1979).
5 E. Y. Andrei et al., Phys. Rev. Lett. 60, 2765 (1988); R. L. Willett et al., Phys. Rev. B 38, 7881 (1988).
6 B. Tanatar & D. M. Ceperley, Phys. Rev. B 39, 5005 (1989); F. Rapisarda & G. Senatore, Aust. J. Phys. 49, 161 (1996).



Wigner Crystallisation in 2D (II)

• Triangular lattice has lowest Madelung constant. Wins at low density.

• Hartree–Fock theory7: antiferromagnetic square lattice → ferromagnetic triangular
lattice at rs = 2.6 a.u.

• We consider only triangular lattices.

7 J. R. Trail, M. D. Towler and R. J. Needs, Phys. Rev. B 68, 045107 (2003).



Magnetic Behaviour of the Fermi Fluid (I)

• Bloch transition: paramagnetic fluid favoured at high density (doubly occupy low-
momentum states to minimise KE); ferromagnetic fluid favoured at low density (keep
electrons apart to minimise XC energy).
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Magnetic Behaviour of the Fermi Fluid (II)

• Hartree–Fock theory: Bloch transition at rs = 2.01 a.u. No region of stability for
ferromagnetic fluid.

• VMC8: Bloch transition at rs = 13(2) a.u.; crystallisation at rs = 33(2) a.u.

• DMC9: Bloch and crystallisation transitions at rs = 37(5) a.u.

• DMC10: Bloch transition at rs = 20(2) a.u. and crystallisation at rs = 34(4) a.u.

• Experiment11: “Possible evidence” of spontaneous spin polarisation at rs = 7.6 a.u.

• Open question: is there a range of densities at which the 2D HEG forms a
ferromagnetic fluid?

8 D. Ceperley, Phys. Rev. B 18, 3126 (1978).
9 B. Tanatar and D. M. Ceperley, Phys. Rev. B 39, 5005 (1989).

10 F. Rapisarda and G. Senatore, Aust. J. Phys. 49, 161 (1996).
11 A. Ghosh, C. J. B. Ford, M. Pepper, H. E. Beere and D. A. Ritchie, Phys. Rev. Lett. 92, 116601 (2004).



Magnetic Behaviour of the Wigner Crystal

• Hartree-Fock theory12: ferromagnetic for rs > 2.6 a.u.

• Multispin exchange model13: frustrated antiferromagnetism (spin liquid) →
ferromagnetism at rs ≤ 175(10) a.u.

• We have studied both ferromagnetic and antiferromagnetic triangular crystals.

• We have used striped antiferromagnetic crystals. Energy should be close to that of
the spin liquid.

Spin up
Spin down

12 J. R. Trail, M. D. Towler and R. J. Needs, Phys. Rev. B 68, 045107 (2003).
13 B. Bernu, L. Candido and D. M. Ceperley, Phys. Rev. Lett. 86, 873 (2001).



Fermi Fluid: Boundary Conditions (I)

• Orbitals for Fermi fluid:

φk(r) = exp(ik · r).

• Periodic boundary conditions on a finite
cell: {k} are simulation-cell G-vectors.

• Single-particle finite-size effects: Increase
N at fixed density; grid of G-vectors gets
finer; energy per electron jumps as shells
of G vectors get occupied.



Fermi Fluid: Boundary Conditions (II)

• Twisted boundary conditions: k are simulation-cell G vectors offset by ks ∈ 1st
Brillouin zone of simulation cell.
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• Twist averaging in canonical ensemble: average over all ks, keeping N fixed.

– Replaces grid of k by a Fermi area (equal to area of Fermi circle), greatly reducing
single-particle finite-size effects.

– Shape isn’t quite right: leaves small positive bias in KE.

• Previous QMC studies of 2D HEG have not used twist averaging.



Long-Range Finite-Size Errors

• Compression of XC hole and neglect of long-range two-body correlations in finite cell
give error in 2D energy per electron going as O(N−5/4).14 Extrapolate using:

EN = E∞ − bN−5/4.

• Previous QMC studies have used N−3/2 for crystals and N−1 for fluid.
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14 N. D. Drummond, R. J. Needs, A. Sorouri and W. M. C. Foulkes, Phys. Rev. B 78, 125106 (2008).



Backflow Transformation

• Evaluate Slater wave function at quasiparticle coordinates related to actual electron
coordinates by electron–electron backflow functions.15

• Moves nodal surface of wave function; can improve the fixed-node DMC energy.

• BF is more significant in fluids than crystals, where electrons are already kept apart
by localisation on lattice sites.

• Parallel spins are already kept away from each other by wave-function antisymmetry.
BF is much less important in ferromagnetic systems.

System (rs = 30 a.u.) Lowering of DMC energy due to BF (µHa / elec.)
Paramagnetic fluid 36(3)
Ferromagnetic fluid 6(4)
Antiferromagnetic crystal 2.4(6)
Ferromagnetic crystal 2.3(3)

15 P. López Ŕıos, A. Ma, N. D. Drummond, M. D. Towler and R. J. Needs, Phys. Rev. E 74, 066701 (2006).



Optimisation of Crystal Orbitals (I)

• Crystal orbitals: φR(r) = exp(−C|r−R|2).

• Only orbital parameter affecting crystal nodal surface: Gaussian exponent C.

– Minimise DMC energy w.r.t. C to minimise fixed-node error.
– Then add backflow.
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Optimisation of Crystal Orbitals (II)

• Ferromagnetic crystals: optimal exponent is CF
DMC = 0.071r

−3/2
s .

– CF, VMC exponent is CF
VMC = 0.15r

−3/2
s ;

– HF exponent is CF
HF = 0.46r

−3/2
s .

• Antiferromagnetic crystals: optimal exponent is CAF
DMC = 0.082r

−3/2
s .



2D HEG Energy Diagram (I)
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2D HEG Energy Diagram (I)
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2D HEG Energy Diagram (II)

• Fully polarised fluid is never stable.

• Wigner crystallisation occurs at rs = 31(1) a.u. Transition is from a paramagnetic
fluid to an antiferromagnetic Wigner crystal.

• Further transition: antiferromagnetic → ferromagnetic crystal at rs = 38(5) a.u.

• At rs = 35 a.u., the energy of a fluid with ζ = 2/5 agrees with the paramagnetic and
ferromagnetic fluid energies.

– Very unlikely that a region of stability for a partially polarised fluid exists.

• Phase transitions in 2D HEG cannot be first order.16

– It’s energetically favourable to form boundaries between macroscopically separated
phases, so a “microemulsion” is formed at crystallisation density.

– New phases could “round off corners” in energy diagram.

16 B. Spivak and S. A. Kivelson, Phys. Rev. B 70, 155114 (2004); R. Jamei et al., Phys. Rev. Lett. 94, 056805 (2005).



Contact PCF of Paramagnetic Fluid (I)

• g(0) is an important parameter in construction of GGA XC functionals for use in
DFT.

• Most theoretical calculations of g(0) have used ladder theory to solve approximately
the Bethe–Goldstone equation for the effective interaction between two electrons.
Exact in high-density limit, but not at low densities.

• Disagreement between old approximation17 in ladder theory and a better
approximation,18 and between the better approximation in ladder theory and QMC.19

Which is right?

• We evaluate g(r) [including g(0)] by binning interparticle distances. Easier in 2D
than 3D. Easier at high density than low density.

• Earlier study used Slater–Jastrow wave function and no twist averaging; ours used
Slater–Jastrow–backflow wave functions and twist averaging.

17 S. Nagano, K. S. Singwi, and S. Ohnishi, Phys. Rev. B 29, 1209 (1984); Erratum, Phys. Rev. B 31, 3166 (1985).
18 Z. Qian, Phys. Rev. B 73, 035106 (2006).
19 P. Gori-Giorgi, S. Moroni, and G. B. Bachelet, Phys. Rev. B 70, 115102 (2004).



Contact PCF of Paramagnetic Fluid (II)
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Fermi Liquid Theory

• Fermi liquid theory20: low-energy excitations in a fluid of interacting electrons can be
treated as excitations of quasiparticles occupying plane-wave states.

• Justification: Pauli exclusion principle. Scattering rate of quasiparticles between plane
waves is low (vanishes at Fermi surface). Single-particle momenta are approximately
good quantum numbers.
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ky

ε
1

ε
4

ε
3

ε
2

20 L. D. Landau, JETP 3, 920 (1957); L. D. Landau, JETP 5, 101 (1957); L. D. Landau, JETP 8, 70 (1959).



Landau Energy Functional

• Total energy E:

E = E0 +
∑
k,σ

Eσ(k)δNk,σ +
1

2

∑
k,σ

∑
k′,σ′

fσσ′(k,k
′)δNk,σδNk′,σ′,

where E0 is the ground-state energy and δNk,σ is the change in quasiparticle
occupancy relative to the ground state.

• Quasiparticle energy band: Eσ(k) is the energy of an isolated quasiparticle.

– Linear approximation: near the Fermi surface, Eσ(k) = EF + (kF/m
∗)(k − kF ),

where EF is the Fermi energy and m∗ is the quasiparticle effective mass.

• Landau interaction function: fσσ′(k,k
′) describes quasiparticle interactions.

– Near the Fermi surface, fσσ′ only depends on the angle θkk′ between k and k′.



Quasiparticle Effective Mass of the 2D HEG

• The effective mass (m∗) of a paramagnetic 2D HEG has been the subject of great
controversy in recent years:

– Some experiments21 found a large enhancement of m∗ at low density; other
experiments22 have contradicted this.

– GW calculations give a range of possible results depending on the choice of
effective interaction.23

– Previous QMC studies have predicted (i) much less24 and (ii) much more25

enhancement of m∗ than found in recent experiments.

• Experiment22 and theory26 suggest that m∗ in paramagnetic and ferromagnetic HEGs
behaves quite differently as a function of density.

21 J. L. Smith and P. J. Stiles, Phys. Rev. Lett. 29, 102 (1972); V. M. Pudalov et al., Phys. Rev. Lett. 88, 196404 (2002).
22 Y.-W. Tan et al., Phys. Rev. Lett. 94, 016405 (2005); M. Padmanabhan et al., Phys. Rev. Lett. 101, 026402 (2008).
23 G. F. Giuliani and G. Vignale, Quantum Theory of the Electron Liquid, CUP, Cambridge (2005).
24 Y. Kwon, D. M. Ceperley, and R. M. Martin, Phys. Rev. B 50, 1684 (1994).
25 M. Holzmann, B. Bernu, V. Olevano and D. M. Ceperley, Phys. Rev. B 79, 041308(R) (2009).
26 Y. Zhang and S. Das Sarma, Phys. Rev. Lett. 95, 256603 (2005).



Calculating the Effective Mass and Landau Interaction Functions

• To calculate the quasiparticle effective mass:

– The DMC energy band E(k) was determined at a range of k by taking the energy
difference when an electron is added to or removed from a closed-shell ground-state.

– A quartic E(k) = α0 + α2k
2 + α4k

4 was fitted to the energy band values.
– The effective mass was then calculated as m∗ = kF/(dE/dk)kF .

• To calculate the Landau interaction functions and hence
Fermi liquid parameters:

– Electrons were promoted from (σ,k) just below the
Fermi edge to (σ′,k′) just above it, to obtain the energy
difference ∆Eσσ′(k,k

′) relative to the ground state.
– The single-particle contribution was subtracted from the

excitation energy, to give −fσσ′(θkk′) = ∆Eσσ′(k,k
′)−

[E(k′)− E(k)].
– The first few Fourier components of fσσ′(θ) were found

by numerical integration in order to obtain the Fermi
liquid parameters.
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Fermi Liquid Parameters

• Fermi liquid parameters:

F s,al =
Am∗

4π2

∫
[f↑↑(θkk′)± f↑↓(θkk′)] cos(lθ) dθ,

where A = πr2sN is the area of the simulation cell.

• For a ferromagnetic HEG, the Fermi liquid parameters {Fl} are given by the expression
above with f↑↓ = 0.

• We need to obtain a description of the interaction parameters according to a well-
defined prescription for energy differences in a finite cell, then extrapolate the Fermi
liquid parameters to the thermodynamic limit.

• Armed with the effective mass and the Fermi liquid parameters, nearly all
thermodynamic and transport properties of the fully interacting electron gas can
be calculated.



Finite-Size Errors

• The calculations were performed in finite cells subject to periodic boundary conditions.

• Major source of error and uncertainty in the QMC results: finite size effects.

• Momentum quantisation:

– In our finite simulation cell subject to (twisted) periodic
boundary conditions, the available momentum states fall
on the (offset) grid of reciprocal lattice points.

– This restricts the k values we can consider.

• There are also finite size errors in the excitation energies due to the neglect of
long-range interactions and correlations in a finite cell.

– These errors have been shown to fall off slowly, as N−1/4, near the Fermi surface.27

27 M. Holzmann, B. Bernu, V. Olevano and D. M. Ceperley, Phys. Rev. B 79, 041308(R) (2009).



Pathological Behaviour at the Fermi Surface (I)

• Fermi liquid theory is only valid near the Fermi
surface.

• Energy band is defined by Landau energy
functional at all k, but does not correspond to
quasiparticle band except near Fermi surface.

• In the infinite-system limit, the exact energy band
is smooth and well-behaved everywhere, including
the Fermi surface.

• The Hartree–Fock band is pathological.

– In the infinite-system limit it has a logarithmic
divergence at the Fermi surface.

– In finite systems it behaves very badly.
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Pathological Behaviour at the Fermi Surface (II)

• DMC may take you 99% of the way from HF to reality, but this does not get rid of
the pathological behaviour from HF theory.

• Hence we need to consider excitations away from the Fermi surface in order to
obtain the gradient of the energy band at kF .

• Finite-size effects in the Fermi liquid parameters are a killer.



Assessing the Accuracy of our DMC Calculations (I)

• Occupied bandwidth: ∆E = E(kF )− E(0) = E−(0)− E−(kF ).

• DMC BW is expected to be an upper bound: assuming DMC retrieves the same
fraction of the correlation energy in the ground and excited states, the BW will lie
between the Hartree-Fock value EHF

− (0)−EHF
− (kF ), which is too large, and the exact

result Eexact
− (0)− Eexact

− (kF ).

• Likewise, Slater-Jastrow DMC BWs are expected to be greater than Slater-Jastrow-
backflow DMC BWs.

• To obtain an accurate BW, it is essential to retrieve a very large fraction of the
correlation energy in the DMC calculations, which explains why the inclusion of
backflow is so important.

• The extent to which the BW is overestimated in HF theory grows with rs so that,
assuming DMC retrieves a constant fraction of the correlation energy, the DMC bands
become less accurate at low density.



Assessing the Accuracy of our DMC Calculations (II)

• Extrapolating the VMC energy with different trial wave functions to zero variance
suggests that our DMC calculations retrieve more than 99% of the correlation energy,
and that the fraction retrieved is similar in both the ground and excited states.

• The free-electron BW is greater than or approximately equal to the exact BW. Hence
the error in the HF BW is less than or approximately equal to ∆EHF − ∆E free =
kF (1− 2/π).

• So the error in the DMC BW is less than 0.01kF (1 − 2/π) ≈ 0.007/rs for
a ferromagnetic HEG and less than about 0.01kF (1 − 2/π) ≈ 0.005/rs for a
paramagnetic HEG.

– Since the BW falls off as r−2s , the error is more significant at large rs.
– In the worst case (the paramagnetic HEG at rs = 10) this argument suggests that

DMC overestimates the BW by ∼ 9%. In the next-worse case (paramagnetic,
rs = 5), the BW is overestimated by ∼ 4%.

– It is reasonable to assume that DMC underestimates m∗ by a similar amount.



To Reoptimise or Not To Reoptimise

• We optimise the trial wave function in the ground state and then continue to use the
same Jastrow factor and backflow function in our excited-state calculations.

• The excitation of a single electron has no effect on the optimal Jastrow factor or
backflow function in the thermodynamic limit.

– Hence the fact that the Jastrow factor and backflow function can be re-optimised
in an excited state in a finite cell28 is simply a finite-size effect.

– More finite-size bias is introduced into the energy band by re-optimising the Jastrow
factor and backflow function in each excited state considered.

• It is essential not to re-optimise the wave function when an electron is promoted, to
maximise the cancellation of errors that occurs when the single-particle contribution
is subtracted out from a difference in total energy.

• Promoting an electron results in smaller finite-size errors than adding two electrons,
since the latter modifies the density of the finite system.

28 For example, re-optimising the wave function when an electron is subtracted from k = 0 in a 74-electron HEG at rs = 1
lowers the DMC energy by 0.000241(4) a.u.



Paramagnetic Single-Particle Energy Band: rs = 1
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Paramagnetic Single-Particle Energy Band: rs = 5

0 0.5 1 1.5
k / k

F

-0.24

-0.22

-0.20

-0.18
ε

(k
) 

(a
.u

.)
Free electron
Hartree-Fock
N = 26
N = 50
N = 74
N = 114

(b) r
s
 = 5



Paramagnetic Single-Particle Energy Band: rs = 10
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Ferromagnetic Single-Particle Energy Band: rs = 1
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Ferromagnetic Single-Particle Energy Band: rs = 5
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Ferromagnetic Single-Particle Energy Band: rs = 10
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Extrapolation of the Effective Mass to the Thermodynamic Limit

• Effective mass against system size:
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• Scaling is not the N−1/4 predicted by Holzmann et al. near the Fermi surface, because
we have fitted to the entire band.

– Assume an N−1 scaling of the finite-size error.



Quasiparticle Effective Masses (I)
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Quasiparticle Effective Masses (I)
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Quasiparticle Effective Masses (I)
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Quasiparticle Effective Masses (II)

• Paramagnetic HEG: effective mass remains close to 1.

• Ferromagnetic HEG: m∗ decreases when the density is lowered.

• Our results therefore support the qualitative conclusions of Padmanabhan et al.

• Our results suggest that m∗ in paramagnetic 2D HEGs does not grow rapidly as the
density is reduced.



Conclusions

• There is no region of stability for a ferromagnetic Fermi fluid in 2D.

• Wigner crystallisation occurs at rs = 31(1) a.u. in 2D. Crystallisation transition is
from a paramagnetic fluid to a (frustrated) antiferromagnetic triangular crystal.

• Transition from an antiferromagnetic to a ferromagnetic crystal at rs = 38(5) a.u.

• QMC results for contact PCF change little when wave function is improved. Suggests
they are accurate. Disagreement with recent ladder theory calculation; agreement
with old ladder theory calculation.

• Our data show that the quasiparticle effective mass of the ferromagnetic HEG
decreases at low density, unlike the paramagnetic HEG.


