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The need for pseudopotentials
“A pseudopotential is an attempt to replace the complicated effects of the motion of the core (i.e.

non-valence) electrons of an atom and its nucleus with an effective potential, or pseudopotential, so

that the Schrödinger equation contains a modified effective potential term instead of the Coulombic

potential term for core electrons normally found in the Schrödinger equation. The pseudopotential

approximation was first introduced by Hans Hellmann in 1934.”

Used in our context, e.g. in plane-wave DFT calculations, the pseudo-wavefunctions can be described

with far fewer Fourier modes and the use of plane-wave basis sets is thus significantly more practical.

What about QMC?

QMC scales badly with atomic number - at best roughly ∝ Z4.5 (up to Z6.5 if you want to remove

any residual timestep error from individual total energies). In practice all-electron calculations only

really feasible for systems containing first-row atoms (and even then only using Gaussian basis sets).

Scaling due to:

• More electrons = more time!

• Step size must be smaller than minimum length scale of wave function (‘Bohr radius’ ∼ 1/Z)

for good DMC acceptance ratios; otherwise get significant serial correlation. More steps required

to target error bar = more time.

• Larger fluctuations in e− n potential energy lead to larger variance for higher Z.

Scaling improved by:

• Removing core electrons and replacing e−n Coulomb interaction with the effective core-valence

electron interaction of a decent pseudopotential.
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Constructing pseudopotentials: one-electron theory

• Electrons deep in energy classified as core electrons;

those shallow in energy classified as valence electrons.

• Core electrons considered inert i.e. their (large) contribution

to total binding energy doesn’t change when atoms brought

together to form molecule or crystal. They are removed and

the valence electrons feel a compensating pseudopotential.

• Pseudopotential different for each valence orbital (non-local

pseudopotential depends on the angular momentum).

• Good pseudopotentials should:

→ be reasonably smooth.

→ behave as −(Z − Nc)/r far from nucleus, where Nc is

the number of removed core electrons.

→ have same eigenvalues as the all-electron orbitals.

→ have same orbitals as all-electron orbitals for large r.

Notes:

- ‘local ’ means that the potential depends only on one space
position (like the Coulomb interaction).
- Space non-locality means that it depends on r and r′, but this
can be given a simplified picture.
- ‘Semi-local ’ means the pseudopotential is expressed in terms of
angular momentum dependence and not on r and r′ separately.
A truly non-local or ‘separable’ pseudopotential is defined to be
non-local both in angular momentum and space coordinates. 0 1 2
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Constructing pseudopotentials: one-electron theory

Example recipe:

• Do an all-electron atom Hartree-Fock calculation.

• Ignore ‘core’ orbitals.

• Construct a pseudo-orbital that is different inside rc.

• Invert the Hartree-Fock equations.

• Inversion gives pseudopotential whose ground state is the pseudo-orbital.

Details:

• Desirable to reproduce scattering properties of atom (requires norm conservation, i.e. we enforce

condition that, inside the cut-off radius, norm of each pseudo-wavefunction identical to its

corresponding all-electron wavefunction so they produce the same core charge).

• More than one potential: Vs 6= Vp 6= Vd
• Project out s, p, and d parts with a projector operator P̂l:

V̂
pp
φ =

∑
l

Vl(r)

[∑
m

∫
Y
∗
lm(Ω

′
)φ(r,Ω

′
)dΩ

′

]
Ylm(Ω)

=
∑
l

Vl(r)P̂lφ

• Redo with Vd as local: V̂ ppφ = Vd(r) +
∑

l [Vl(r)− Vd(r)] P̂lφ
• V̂ pp is a one-body potential and is a non-local potential.
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Constructing pseudopotentials: one-electron theory

Example: silicon atom one-electron(LDA-DFT) energy levels are

nl Occ. Eigenvalue (Ha)
3p 2 -0.153526025 Valence
3s 2 -0.398313865
2p 6 -3.514381690 Core
2s 2 -5.074463805
1s 2 -65.184556915
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Pseudopotentials in QMC
Choice of one-electron theory

• Can try DFT or Hartree-Fock pseudopotentials.

• Hartree-Fock seems to give systematically better results in QMC.

Why? DFT orbitals only represent density and are not components of a many-body wave function.

• Hartree-Fock neglects correlations, but in such a way that:

1) Valence-valence correlation is done by QMC

2) Core-core correlation is small and indirect

3) Core-valence correlation is small

4) Core-polarization potentials are available

• Hartree-Fock pseudopotentials are the best we have (for now).

Relativistic effects

• We can in fact go beyond this and approximately incorporate relativistic effects using Dirac-Fock

theory→ ‘Dirac-Fock Average Relativistic Effective Potential (AREP)’.

• Solving the Schrödinger equation with Dirac-Fock AREP pseudopotentials will result in the

inclusion of scalar relativistic effects (i.e. mass polarization term, mass velocity term, Darwin

terms, retardation terms, but not spin-orbit potentials).

• It is good to have HF pseudopotentials available as well since sometimes one wants to compare

QMC results with experimental data where relativistic effects have been explicitly subtracted.
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Pseudopotentials in VMC: non-local integration
• Must evaluate the expectation value of V̂nl = Vloc +

∑
l ∆Vl(riI)P̂l where P̂l projects out the

l-th spherical harmonic component of the wave function

• At each R the quantity Ψ−1(R)
∑

i

∑
l ∆Vl(riI)P̂lΨ(R) is computed

• Integration of Ψ over the surface of sphere riI≡constant for each electron

Non-local integration:

• Integrate over sphere surface using quadrature grids defined using standard published ‘rules’.

Number of points in grid set by ‘rule number’ parameter non local grid in casino input file

(generally) or in pseudopotential file (for individual atom types). Integration error decreases with

increasing non local grid value.
+---------------------------------------------------------+

| NON_LOCAL_GRID Exactly integrates l=... No. points |

+---------------------------------------------------------+

| 1 0 1 |

| 2 2 4 |

| 3 3 6 |

| 4 5 12 |

| 5 5 18 |

| 6 7 26 |

| 7 11 50 |

+---------------------------------------------------------+

Number of grid points increases roughly

as square of rule number, and each rule

integrates an expansion in spherical harmonics

Ylm up to l = lmax exactly, where lmax
increases approximately linearly with rule

number.

• In a QMC calculation the spherical grid is typically rotated randomly before each numerical

integration, so that the numerical integrals are unbiased random estimates of the angular-

momentum components of the trial wave function.

• Using integration scheme with small number of grid points reduces the cost of each local-energy

evaluation in a QMC calculation; on the other hand using a smaller number of grid points

increases the random error in the integration, and hence the standard error in the mean energy.

It is therefore expected that there is an optimal numerical integration rule.
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Optimal choice of non-local integration grid

Two examples of the effects of using different non-local integration rules:

For the oxygen molecule the most efficient integration rule is Rule 3, which uses six points and would

be exact for an expansion in spherical harmonics up to lmax = 3. For indium selenide the optimal

rule is Rule 2. However, since the efficiency falls off very much more steeply when the integration

rule is too small than when it is too large, we recommend that Rule 4 be chosen to be the default.

Rule 4 uses 12 points and would be exact for an expansion in spherical harmonics up to lmax = 5.

Nevertheless, QMC practitioners should be aware of the possibility of substantially increasing the

efficiency of their calculations by choosing Rule 3 instead of Rule 4.

[Note: don’t use Rule 5 - gives same results as Rule 4 but is more expensive]
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Pseudopotentials in QMC: implementation in DMC

• Non-local operators problematic in DMC: must evaluate V̂nlΦ, but Φ is unknown, and the

standard DMC algorithm assumes the potential energy operator to be local.

• Pseudopotential localization approximation (PLA): Φ−1V̂nlΦ ≈ Ψ−1
T V̂nlΨT

• PLA effective potential is many-body and local.

• Error incurred is proportional to square of error in trial wave function ΨT . However, sign of error

is arbitrary, undermining the variational principle for the fixed-node DMC ground-state energy.

• Divergences in the localized pseudopotential due to nodes in the trial wave function can result in

instabilities in the DMC algorithm.

• The latter two problems can largely be removed by means of a partial locality approximation

known as the “T-move” scheme, although this may increase the absolute magnitude of the

pseudopotential errors.

24x64:brutus% casinohelp use_tmove

CASINO HELP SYSTEM

==================

DESCRIPTION

-----------

If USE_TMOVE is T then the Casula nonlocal pseudopotential scheme will be used in DMC. So-called ’T-moves’ will be

performed in order to give a DMC energy that is greater than or equal to the ground-state energy. This violates the

detailed-balance principle at finite time steps, but greatly improves the stability of the DMC algorithm when nonlocal

pseudopotentials are used. The advantages of T-moves are that they restore the variational principle and help to

prevent population explosions; the disadvantages of T-moves are that the magnitude of the error due to the locality

approximation is generally larger, although always positive, and the time-step bias is generally worse. [This latter

problem is alleviated, to some extent, by using a symmetric branching factor (Casula 2010) as opposed to the

asymmetric one suggested in his 2006 paper. This advice was implemented in CASINO in June 2014.]. A further

disadvantage is that this option requires a truly enormous amount of memory in systems with large numbers of particles

(seeing if this can be reduced remains a project).
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Trail-Needs pseudopotentials
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Developed by John Trail and Richard Needs in our group in Cambridge.

• The TN pseudopotentials are Dirac-Fock average relativistic effective
pseudopotentials optimized for QMC calculations.

• The core is as large as possible in each case, and pseudopotential data are
provided for the s, p, and d angular-momentum channels only.

• The issue of the need for higher-angular momentum channels (f ,g,..) in some
cases was discussed by Tipton, Drummond, and Hennig in Phys. Rev. B 90,
125110 (2014).

• Either s, p, or d must be chosen to be the local channel, the potential for which is
then applied to all higher angular-momentum components of the wave function.
By default the d channel is chosen to be local in the TN pseudopotentials (but
see further discussion later).

• Another widely used set of Dirac-Fock pseudopotentials for QMC calculations
was proposed by Burkatzki, Filippi, and Dolg. The performance of these two
families of pseudopotentials in studies of small molecules was compared in J.
Chem. Theory Comput. 10, 2049 (2014).
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Where to get TN pseudopotentials for CASINO

The CASINO pseudopotential library

https://vallico.net/casinoqmc/pplib/

(Note colours and design have changed - probably for the worse - on the latest
website - but you get the idea..)
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The CASINO pseudopotential library

Click on an element to see..

All words underlined in red are
links to further data.

• Pseudopotential input files for
other codes

• Pseudopotential plots

• Pseudopotential properties
(total energies, etc)

• Atomic wave functions in
casino format

• CPPs and spin-orbit potentials
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The CASINO pseudopotential

Choosing a pseudopotential

  5

Hartree-Fock (HF) pp

Flow chart of the seven pseudopotentials

Dirac-Fock Average 
Relativistic pp (DF AREP) 

Tabulated Parametrized

GAUSSIAN 
& CRYSTAL

GAMESS-US

Tabulated Parametrized

GAUSSIAN 
& CRYSTAL

GAMESS-US

‘softer‘ ‘harder‘

4. 5. 6. 7. 1. 2. 3.

Method

Represen-
tation

Code CASINO CASINO CASINO

Label
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Pseudopotentials in CASINO

Which is best?

• Pseudopotentials are not unique and there is no “best” pseudopotential.

• User must choose the most appropriate pseudopotential, and this depends on
what is being calculated.

Hartree-Fock or Dirac-Fock?

• Hartree-Fock includes no relativistic effects.

• Dirac-Fock includes some relativistic effects.

What results do you compare with?

• Compare with experiment → use DF pseudopotential.

• Compare with non-relativistic DFT → use HF pseudopotential.
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Pseudopotentials in CASINO

Tabulated or parameterized

What code do you use to generate the trial wave function?

• Parameterisation is neccessary for many packages.

• gaussian, crystal, gamess for these packages and more.

• Format conversion routines in CASINO/utils/pseudo converters.

• Consistency - if we use Dirac-Fock for gamess, we should use Dirac-Fock
pseudopotential for casino.

Use tabulated pseudopotentials if possible.
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Core polarization potentials (CPP)
CPPs account for the polarization of the pseudo-ion cores by the fields of the other charged particles

in the system. The polarization of the pseudo-ion cores by the fields of the valence electrons is a

many-body effect which includes some of the core-valence correlation energy.

Derivation

• From electrostatic theory and an approximation

• A core J feels E due to cores, I, and electrons, i.

E = −
∑
I 6=J

ZI
RI − RJ

|RI − RJ|3
+

∑
i

ri − RJ

|ri − RJ|3

• E polarizes core J by P = αJE

• Polarization energy is −1/2αJE.E

• Add up energy of all cores, and add to Hamiltonian

HCPP =
∑
iJ

Ve(riJ) +
∑
ijJ

Ve−e(riJ, rjJ) +
∑
iIJ

Ve−n(RIJ, riJ) +
∑
IJ

Vn(RIJ)

• Potentials are many-body, local and ∝ 1/distance4
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Core polarization potentials (CPP)
Results

Energies (eV) for excitations of a Si atom

3s23p2 → 3s23p1 → 3s2 →
3s13p3 3s13p2 3s13p1

LDA 3.827(10) 4.994(10) 6.232(16)

HF 3.909(13) 5.096(9) 6.363(15)

HF+CPP 4.052(10) 5.264(9) 6.571(6)

DF 3.955(13) 5.146(9) 6.434(7)

DF+CPP 4.069(9) 5.297(9) 6.578(6)

Exp. 4.11 5.30 6.56
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Pseudopotentials in CASINO
Core polarization potentials (CPPs)

• Used in addition to pseudopotentials.

• CPPs can only be included in casino and molpro.

• Should make results more accurate.

• BUT largely untested so it’s up to you to test them.

Spin-orbit (SO) potentials

• Used in addition to pseudopotentials to describe fine structure.

• Include fine structure effects.

• Should make results more accurate.

• BUT almost no packages use them.

Ignore CPP and SO unless your research is actually about this.
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Plane-wave basis and ‘ghost states’

Most QMC calculations for real materials have featured either first- or second-row atoms. An issue

that quickly emerges when one attempts to use TN pseudopotentials for transition metals ‘off the

shelf’ in plane-wave DFT orbital-generation calculations is the presence of ghost states due to the

Kleinman-Bylander representation of the pseudopotentials in the DFT code.

The presence of ghost states gives rise to some or all of the following symptoms:

• the failure of the DFT self-consistent-field (SCF) process to converge

• a large difference between the DFT energies obtained with plane-wave and Gaussian basis sets

• the existence of an absurdly low Kohn-Sham eigenvalue

• an absurdly high (unbound) energy when the orbitals are used in VMC calculations

• a very large energy variance

• enormous difficulty optimizing a trial wave function in VMC

• enormous difficulty controlling the configuration population in a DMC simulation.

Furthermore, these difficulties may change or disappear when the local channel is changed.
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TN pseudopotentials and ghost states

Here the difference between the DFT energy obtained using a plane-wave basis with a Kleinman-

Bylander representation of the pseudopotential and the DFT energy obtained using a Gaussian basis

for each TN pseudopotential.

• Choosing the d channel to be local often leads to a relatively enormous difference between the

plane-wave and Gaussian DFT results, strongly suggesting a problem caused by a ghost state.

• Choosing the s channel to be local avoids this problem in every case apart from niobium.

• Choosing the p channel to be local avoids the problem with ghost states in most cases.
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TN pseudopotentials and ghost states

Shows which TN pseudopotentials are likely to be affected by ghost states for different choices of

local channel, based on the analysis of the DFT energies on the previous slide.

The presence of ghost states makes QMC work meaningless or impossible; however, inexperienced

users may wrongly ascribe the problems encountered to the general difficulty of optimizing QMC trial

wave functions. Eliminating ghost states from DFT orbital-generation calculations is a necessary

but not sufficient condition for accurate QMC work. Even if the orbitals generated in the DFT

calculation are unaffected by ghost states, the choice of local channel may still affect the behavior of

the subsequent QMC calculations.
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TN pseudopotentials and ghost states

This shows which TN pseudopotentials are affected by ghost-state-like symptoms in QMC calculations

using a plane-wave/blip basis for different choices of local channel (used in both the DFT and the

subsequent QMC calculations). The criteria used for judging that a particular pseudopotential with

a particular choice of local channel is problematic are the symptoms listed three slides back.

• Only one TN pseudopotential, niobium, is apparently completely unusable in plane-wave

calculations. The problem with niobium is not currently understood.

• In every other case, the problem of ghost-state-like symptoms can be avoided by choosing the s

channel to be local in the plane-wave DFT calculation.
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What should I use as a local channel?

• In QMC calculations that use orbitals generated with the s channel chosen to be local, the local

channel can either be left as s or (preferably) changed to d; no symptoms of ghost states occur

in either case.

• By contrast, there are several elements for which choosing the p channel to be local does

not cause any problems in the DFT calculation but does adversely affect the subsequent QMC

calculations (see previous figures).

• Applying the potential for the d channel to higher angular-momentum components in the QMC

calculation is expected to be more accurate in principle than applying the potential for the s

channel; furthermore, it can be shown that choosing d to be local in QMC reduces the achievable

variance in many cases.

• Experience with plane-wave DFT calculations for 3d transition metals suggests that choosing p

to be local provides reasonable energies, but is very vulnerable to unstable convergence and/or

apparent convergence to different final energies for different initial conditions. A likely explanation

for this behavior is a ghost state of similar energy to the actual state. This may well be the cause

of the difference between the elements highlighted as being problematic when p is local in the

previous figures.

• For the transition metal pseudopotentials the s and d characters of the wave functions are

expected to be dominant near the nuclei, with the p character being either minimal or zero. This

suggests that taking s rather than p to be local in DFT calculations will be the most accurate

choice, as it avoids an approximate projector representation for this channel.
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Plane wave basis convergence
Is it important to use highly converged plane-wave orbitals in QMC calculations, i.e., is it crucial to

use a tight tolerance for self-consistency in the orbital-generation DFT calculations?

• This is plot of the plane-wave cutoff energy required to achieve a given level of convergence in

the DFT total energy against atomic number.

• The cutoff energy required to converge the total energy of each atom to within so-called chemical

accuracy (1 kcal/mol or 1.59 mHa) is shown, as is the cutoff energy required to converge the

total energy to 0.1 mHa, an order of magnitude tighter than chemical accuracy.

• Interesting observation: the required cutoff energies for the 3d transition metals are in many

cases impractically large; hence any attempt to perform plane-wave-DFT-QMC calculations using

the TN pseudopotentials for those atoms will inevitably encounter problems associated with large

variances, and the outcome will at best rely on a cancellation of errors.
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Plane-wave basis convergence

Isolated oxygen atom (left) and an oxygen molecule (right). Top panels: DFT, VMC, and DMC energies as a function of plane-wave cutoff
energy Ecut Bottom panel: VMC energy variance against plane-wave cutoff energy. Two different levels of correlated wave function were used
in the VMC calculations, and linear-least-squares energy minimization (‘Emin’) and unreweighted variance minimization (‘Varmin’) were used to
optimize the wave functions. The dashed and dash-dotted vertical lines show the cutoff energies at which the DFT total energy is converged to
within chemical accuracy and to within 0.1 mHa, respectively. The DMC calculations used the T-move scheme.

– Typeset by FoilTEX – 26



Efficiency considerations

• The dependence of the DMC energy on the orbitals in the Slater wave function is in general

very weak, because the DMC energy only depends on the trial wave function via the fixed-node

approximation and the pseudopotential locality approximation.

• However, the VMC energy, the VMC energy variance, and hence the efficiency of QMC calculations

can depend significantly on the orbitals.

• It has been shown that, for a given wave-function form, the efficiency of the importance-sampled

DMC algorithm is maximized when the trial wave function is optimized by energy minimization.

• Reducing the finite-basis error in the DFT total energy per atom provides a better starting point

for optimization of the correlated part of the trial wave function, and the reduction in the DFT

energy with increasing basis-set size translates directly into a reduction in the VMC energy, as

shown for an oxygen atom and oxygen molecule on next slide.

• Since QMC calculations are generally intended to achieve chemical accuracy or higher, it is

desirable for the finite-basis error in the DFT energy to be substantially less than chemical

accuracy.

• Considerable reductions in the VMC variance can be achieved by increasing the plane-wave cutoff

energy up to the value suggested by the convergence of the DFT total energy to chemical

accuracy. The performance of unreweighted variance minimization improves significantly once

the basis set becomes adequate.

• The results on the previous slide show that, apart from the lowest plane wave cutoff energy

studied, the DMC energy is almost independent of the cutoff energy.
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Further observations

• Comparing results for the oxygen atom and the oxygen molecule it is clear that there is a

significant cancellation of finite-basis errors in the VMC binding energy of an oxygen molecule,

suggesting that one could ‘get away with’ relatively low plane-wave cutoff energies.

• However, it is more efficient to use a high plane-wave cutoff energy (such that the DFT total

energy is converged to 0.1 mHa), because it leads to an enormous reduction in the variance of

the energies of the atom and the molecule, and hence gives smaller statistical error bars in the

binding energy.

• When the orbitals are represented in a blip basis in QMC calculations, the cost of the calculation

is only weakly dependent on the plane-wave cutoff energy. The cost of the DFT orbital-generation

calculation clearly depends on the cutoff energy, but orbital generation is usually a negligibly

small fraction of the computational expense of a QMC project.

No evidence of any need for tight

SCF tolerances. That said, since

DFT calculations are generally negligibly

cheap compared with DMC calculations,

there is no good reason for not using a

tight convergence criterion.
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Achievable energy variance with TN pseudopotentials
• Here is plotted the VMC energy variance

achieved for each element using a fixed

plane-wave cutoff energy of 120 Ha.

Lower variances can nearly always be

achieved by setting s as local channel

during DFT orbital-generation calculation.

• Variance either unchanged or lowered

further if d channel subsequently chosen

to be local in the QMC calculation.

• Again clear that the most difficult cases

by far are the 3d transition metals, where

the variance is orders of magnitude larger

than for other elements.

• As results obtained with fixed 120 Ha

cutoff energy this is partly due to cutoff

being too small. However, for real

calculations, it becomes impractical to use

the cutoffs required for these elements.

• The lower panel shows that, although

unreweighted variance minimization

generally gives a lower variance than

linear-least-squares energy minimization,

there are more cases in which variance

minimization catastrophically fails.
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Worst case scenario case study: the copper atom..

• Clear that the choice of trial wave function

and optimization method affects not only

the behavior at finite time step, but also

the final DMC energies extrapolated to

zero time step.

• In all-electron fixed-node DMC

calculations, the DMC energies at

zero time step obtained using Slater

and Slater-Jastrow wave functions are

identical, because the nodal surface is not

affected by the Jastrow factor.

• However, for copper, pseudopotential

locality errors lead to differences on the

scale of several eV between the DMC

energies obtained with different Jastrow

factors and without a Jastrow factor.

• This problem is significantly ameliorated

by the use of the T-move scheme.
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The Cu atom continued..

• Table shows the DMC energies extrapolated to zero time step and infinite population, together

with the corresponding VMC energies and variances.

• Without T-moves the DMC energies depend significantly on the trial wave function and can be

nonvariational.

• The spread of DMC energies is significantly reduced by the T- move scheme, and in particular

the spuriously low energies obtained with poorer wave functions are eliminated.

• The change in the T-move DMC energy resulting from the inclusion of f terms in the Jastrow

factor is small compared with the difference in energy resulting from the inclusion of backflow.

• By contrast, including f terms has a much larger effect on VMC energies than including backflow.

• This suggests that, if one has a Slater-Jastrow wave function with u, χ, and f terms, locality

errors are small compared with fixed-node errors. When the wave function is optimized by energy

minimization, the standard error in the DMC energy is, as expected, significantly lower in general

(this is always the case when T-moves are used).
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Conclusions for this case..
The copper atom is an extreme case that highlights a number of important issues:

• Pseudopotential locality errors in the DMC total energy can be as large as several eV per atom,

and they manifest themselves by significant dependence of the DMC energy on the Jastrow factor;

• pseudopotential locality errors can be greatly ameliorated by the use of the T-move scheme

• if the plane-wave cutoff energy is smaller than ideal then energy minimization appears to be

more reliable than unreweighted variance minimization and also results in greater efficiency in

subsequent DMC calculations;

• including extra correlation in the trial wave function using, e.g., electron-electron-nucleus (f)

terms reduces both locality errors and time-step bias.

Strategies that prevent numerical problems with copper can be expected to work for all the other

transition metals, because copper has the deepest d-channel.
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For some elements..

..we need better
pseudopotentials!
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Constructing pseudopotentials: many-body theory

• Core and valence are ill-defined concepts

• Different attempts to derive many-body pseudopotentials:

– Approximate Ψ = Â{ΨcoreΨvalence} → no core-valence correlation, not much faster.

– Generalise norm-conservation condition to many-body case→ current research.

– Pseudo-hamiltonians→ inaccurate when transferred.

– Use VMC for ‘core’ and DMC for ‘valence’ → does not change the scaling with atomic

number.

Thus up to now usually considered best to construct pseudopotentials from one-particle theories.

But! John Trail and Richard Needs in Cambridge are working on ‘correlated electron pseudopotentials

which are now sufficiently well developed to be published:

J.R. Trail and R.J. Needs, J. Chem. Phys. 139, 014101 (2013)

J.R. Trail and R.J. Needs, J. Chem. Phys. 142, 064110 (2013)

The latter was published with 6 correlated-electron pseudopotentials for Sc-Fe.

John email to me 15/7/2016 says: ”A new type (yes, yet another one) of pseudopotential should be

available soon (test data + paper are in preparation). These improve the accuracy of the correlated-

electron pseudopotentials further by combining correlated-electron ’norm-conservation’ and energy

consistency. These will be available for 1st row, and the 3d-transitions Sc-Fe and Cu.”

The CASINO website will be reengineered soon to incorporate these new pseudopotentials. For now,

no-one other than John has ever had access to them - hopefully soon!
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Conclusions

Positive:

• Pseudopotentials reduce number of electrons.

• Pseudopotential make everything smoother
−→ more samples so higher accuracy.

Negative:

• Uncontrolled but small error.

• One must choose carefully and check.
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