
– Typeset by FoilTEX – 1

Probability and statistics in quantum Monte Carlo

The fascinating details

Mike Towler

TCM Group, Cavendish Laboratory, University of Cambridge

QMC web page: vallico.net/casinoqmc

Email: mdt26@cam.ac.uk

– Typeset by FoilTEX – 2

The need for statistical analysis

A QMC calculation produces potentially millions of data values, e.g. total energies
obtained by sampling the particle configuration space.

The M data values may be serially correlated, especially in DMC where we must
use much smaller timesteps. Need to account for this.

Data have a sample variance s2
M (‘width of the oscillations’). Clearly, estimate of

this becomes more accurate over time and approaches non-zero constant value.

From this want single number with error
bar : the mean energy ĒM ± σ where σ is
the standard error of the mean given by√
s2
M/M .

The error bar therefore decreases as
the square root of the number of samples.

0.5 0.55
E (a.u.)

0

0.5

1
P

(E
)

(a
rb

itr
ar

y
un

its
)

E
L
 distribution

E distribution

– Typeset by FoilTEX – 3

Local energy and mean energy

0.5 0.55
E (a.u.)

0

0.5

1
P

(E
)

(a
rb

itr
ar

y
un

its
)

E
L
 distribution

E distribution

The local energy distribution is what we sample.
The mean energy distribution is what we obtain.

– Typeset by FoilTEX – 4

Some basic quantities

• We have a set of configurations {Ri}i=Mi=1 distributed according to |Ψ(R)|2.

• Each has a local energy Ei = EL(Ri) = ĤΨ(Ri)
Ψ(Ri)

.

• EL(R) forms a local energy distribution with mean and variance:

EVMC =
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉

≈ Ē =

∑M
i=1Ei
M

s2 =
〈Ψ|Ĥ2|Ψ〉
〈Ψ|Ψ〉

−

[
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉

]2

≈ s2
M =

∑M
i=1

(
Ei − Ē

)2
M − 1

• Mean energy Ē can be determined to a given degree of certainty. It has an error
bar σ (the ‘standard error of the mean’) and forms a distribution with mean and
variance:

Ē =

∑M
i=1Ei
M

σ2 =

∑M
i=1

(
Ei − Ē

)2
M(M − 1)

– Typeset by FoilTEX – 5

Population vs. sample: why (M − 1)?

• Real-world distributions such as the average height of all the trees on Earth,
or the average weight of a raindrop during a storm, can never be fully known,
because you can’t measure every tree or weigh every raindrop.

• Nevertheless, these quantities presumably exist, and God is aware of what they
are, so we give them names: a population mean µ with a population variance s2.

• We estimate the mean and variance of the whole distribution by using an
estimator, a function of a sample of M observations drawn suitably randomly
from the whole sample space. In this way we define a sample mean ĒM and a
sample variance s2

M .

• Jargon: the error of a sampled value is the deviation of the value from the
(unobservable) population mean µ, while the residual of a sampled value is the
difference between the sample value and the estimated sample mean ĒM .

• While there are M independent samples, there are only (M − 1) independent
residuals, as they sum to zero.

• The quantities Ei − ĒM are residuals that may be considered estimates of the
errors Ei−µ. The sum of the residuals (unlike the sum of the errors) is necessarily
zero. If one knows the values of any M −1 of the residuals, one can thus find the
last one. This means they are constrained to lie in a space of dimension M − 1,
and one says that ‘there are M − 1 degrees of freedom for errors.’. The formula
for the sample variance therefore contains M − 1 (“Bessel’s correction”).

– Typeset by FoilTEX – 6

What does the error bar mean?

Let’s say we’ve done a VMC calculation, and we get the answer ĒM with an error
bar of σ = 0.001. What can we conclude from this?

Definitions:

• Can define a confidence interval in this context as some range of energy, centred
on your calculated mean energy ĒM , spanned by e.g. ±σ,±2σ etc.. (in principle
different for repeated runs).

• Then, if you construct many such confidence intervals, from repeated VMC runs
with different random numbers, the proportion of these intervals that contain the
true mean energy E is the confidence level.

• In QMC, usual to assume validity of central limit theorem (CLT), whereby
the mean energies of repeated calculations are distributed normally, and the
confidence levels are thus 0.683, 0.954, 0.997, . . . for intervals of±σ,±2σ,±3σ, . . .

• A statistically valid confidence level is one
where numbers like this are actually true!
Note that if so, we can just write down
the approx. number of energy samples
required to obtain a target error bar.

• Assumption that the mean energies obey
a normal distribution is likely to be an
approximation.

If we run the same calculation many times with

different random numbers, in 95% of them the

two-sigma interval will include exact value.

– Typeset by FoilTEX – 7

The central limit theorem

The central limit theorem (CLT) states that, given certain conditions, the arithmetic
mean of a sufficiently large number of iterates of independent random variables, each
with a well-defined expected value and well-defined variance, will be approximately
normally distributed.

That is, if a sample is obtained containing a large number of observations, each
observation being randomly generated in a way that does not depend on the values
of the other observations, and that the arithmetic average of the observed values
is computed. If this procedure is performed many times, the central limit theorem
says that the computed values of the average will be distributed according to the
normal distribution.

– Typeset by FoilTEX – 8

Distribution of total energy estimate

x

P
1
(x
)

3210-1-2-3

• Average of 1 random variable

• P1(x) is PDF of x = EL(1)

– Typeset by FoilTEX – 9

Distribution of total energy estimate

x

P
2
(x
)

3210-1-2-3

• Average of 2 random variables

• P2(x) is PDF of x = 1
2(EL(1) + EL(2))

– Typeset by FoilTEX – 10

Distribution of total energy estimate

x

P
3
(x
)

3210-1-2-3

• Average of 3 random variables

• P3(x) is PDF of x = 1
3(EL(1) + EL(2) + EL(3))

– Typeset by FoilTEX – 11

Distribution of total energy estimate

x

P
4
(x
)

3210-1-2-3

• Average of 4 random variables

• P4(x) is PDF of x = 1
4(EL(1) + EL(2) + EL(3) + EL(4))

– Typeset by FoilTEX – 12

Distribution of total energy estimate

x

P
5
(x
)

3210-1-2-3

• Average of 5 random variables

• P5(x) is PDF of x = 1
5(EL(1) + EL(2) + EL(3) + EL(4) + EL(5))

– Typeset by FoilTEX – 13

Distribution of total energy estimate

x

P
1
0
(x
)

3210-1-2-3

• Average of 10 random variables

• P10(x) is PDF of x = 1
N

∑N
n=1EL(n)

– Typeset by FoilTEX – 14

Distribution of total energy estimate

x

P
1
0
0
0
(x
)

3210-1-2-3

• Average of 1000 random variables

• P1000(x) is PDF of x = 1
N

∑N
n=1EL(n)

– Typeset by FoilTEX – 15

Central limit theorem II

x

P
1
0
0
0
(x
)

10.80.60.40.20

• Average of N random variables → normal distribution.

• Defined by two numbers, the mean and standard deviation.

• Centred at mean, width of σ ∝ 1/
√
N .

• Probability is all close to the mean.

– Typeset by FoilTEX – 16

The normal distribution

• The normal distribution is D(E; Ē, σ) = 1√
2πσ

exp
[
−(E−Ē)2

2σ2

]
• The probability of the E being in an interval (A,B) is

P (A < E < B) = f

(
B − Ē
σ

)
− f

(
A− Ē
σ

)
f(x) =

1√
2π

∫ x

−∞
exp

(
−y2/2

)
dy

In doing integrals like this we are calculating the error function erf(x) and/or
the complementary error function 1− erf(x).

• One-sigma interval (Ē − σ, Ē + σ) → 68.3% → unreliable

• Two-sigma interval (Ē − 2σ, Ē + 2σ) → 95.4% → reliable

• Three-sigma interval (Ē − 3σ, Ē + 3σ) → 99.7% → very reliable

– Typeset by FoilTEX – 17

The normal distribution

Comparison of a Gaussian and the local energy distribution

I I

I I

I I

0.5 0.55
E (a.u.)

0

0.2

0.4

0.6

0.8

1

1.2

1.4
P

(E
)

(a
rb

it
ra

ty
 u

n
it

s)

Gaussian
VMC histogram

68.3%

95.4%

99.7%

-σ +σ

-2σ

-3σ

+2σ

+3σ

From central limit theorem: the mean energy is assumed exactly normal

– Typeset by FoilTEX – 18

Dependence on wave function quality..

0.5 0.55
E

L
 (a.u.)

0

0.5

1
P

(E
L
)

(a
rb

. u
ni

ts
)

Slater-Jastrow
Slater-Jastrow-
backflow

– Typeset by FoilTEX – 19

How well is the central limit theorem obeyed in casino?

The CLT is true in the large-N limit for a limited class of distributions, and so we
have two non-trivial questions:

• Has the large-N limit been reached?

• VMC local energies one of the ‘limited class of distributions’?

Noted by various people – see esp. Trail, Phys. Rev. E 77, 016703 (2008) –
that the local energy distribution is clearly not Gaussian, for both VMC and DMC
calculations. ‘Heavy-tailed’ due to e.g. nodal singularities..

For most applications of QMC only single estimates are constructed, with an
estimated random error calculated using the CLT. Generally, no ensemble of estimates
is calculated to justify that this error is normal. Best we can do is observe that
for many published results the estimated total energies and errors are consistent
with exact energies where these are known in that they are higher (to within the
statistical accuracy suggested by the CLT).

Trail: in general for the total energy the CLT is found to be valid in its weakest form,
in that the influence of finite sample size is not obvious and must be considered on
a case by case basis. Outliers significantly more likely than CLT.

Estimates of the variance in general the CLT is found to be less valid. Possesses
slowly decaying tails so outliers are many orders of magnitude more likely than CLT.

– Typeset by FoilTEX – 20

Sampling of configuration space

The configurations {Ri}i=Mi=1 must be distributed according to |Ψ(R)|2.

Sampling algorithm at i-th step

• Start at config Ri.

• Propose a new config R′i.

• Compute the wave function ratio qi =
∣∣∣Ψ(R′i)
Ψ(Ri)

∣∣∣2.

• Generate random number ξ uniform in [0, 1).

• Metropolis accept/reject step:
– if ξ < min [1, qi] → set Ri+1 = R′i (accept new config)
– if ξ > min [1, qi] → set Ri+1 = Ri (reject new config)

If R′i is proposed at random, the chances of landing in a reasonable region of
configuration space are slim. Thus qi will be small, most moves will be rejected,
and we get very poor sampling

If R′i is Ri plus a small displacement, then R′i similar to Ri , EL(R′i) similar to
EL(Ri) and we then have what is known as serial correlation.

– Typeset by FoilTEX – 21

Effect of serial correlation

Serial correlation implies that, in general, if we simply take the square root of the
raw data variance over the number of samples it will be too small, particularly in
DMC where we are forced to use smaller timesteps.

This is because successive local energies are more similar on average than they would
be if the configurations were independent.

{E1, . . . , E1︸ ︷︷ ︸
τ

, E2, . . . , E2︸ ︷︷ ︸
τ

, E3, . . . , E3︸ ︷︷ ︸
τ

, . . . , EM , . . . , EM︸ ︷︷ ︸
τ

}

Energy sequence with artificial correlation as above has no new info compared to
uncorrelated set {E1, E2, E3, . . . , EM}. Mean and error bar should not change, but
in fact computed error bar of new set is σ′

Ē
= σĒ/

√
τ . Error bar underestimated!

Here can remove serial correlation by ignoring τ − 1 of every τ consecutive Ei. For
real data, τ varies during the run and must ignore τmax− 1 of each τmax data to be
safe - lots of relevant data discarded. However we may assume that σĒ =

√
τσ′

Ē
where τ is the average correlation time. casino prints this in VMC..

– Typeset by FoilTEX – 22

The reblocking algorithm
Consider the following operation on data, where the item under each brace is the
average of the two numbers above:

E
(0)
1 E

(0)
2︸ ︷︷ ︸ E

(0)
3 E

(0)
4︸ ︷︷ ︸ E

(0)
5 E

(0)
6︸ ︷︷ ︸ E

(0)
7 E

(0)
8︸ ︷︷ ︸

E
(1)
1 E

(1)
2︸ ︷︷ ︸ E

(1)
3 E

(1)
4︸ ︷︷ ︸

.

If applied until τmax original data grouped together resulting (smaller) data set is
not serially correlated though not we cannot compute τmax directly.

At the k-th iteration in this procedure:

σ̃
(k+1)2

Ē
≈ σ̃(k)2

Ē
+

2
∑M(k)/2

i=1

(
E

(k)
2i−1 − Ē

)(
E

(k)
2i − Ē

)
M (k)(M (k) − 2)

Last term tends to zero with no serial correlation
(positive otherwise). σ̃

(k)

Ē
increases toward true

error bar as k ≈ log2(τmax). Plateau in σ̃
(k)

Ē
signals convergence. Since a few years ago,
casino does this ‘on the fly’, and the reblocked
error bars are automatically printed to output.

0 5 10 15 20 25
k

0.00000

0.00001

0.00002

0.00003

0.00004

 ~ σ E (
k)

 (
a.

u.
)

lo
g 2(τ

)

lo
g 2(τ

m
ax

)

– Typeset by FoilTEX – 23

The reblock utility

Until recently, reblocking was a ‘postprocessing’ operation done after the QMC
calculation had finished, and was caried out by a casino utility ‘reblock’. This
utility is still useful e.g. for producing plots like the following, which gives you a
visual indication of whether the reblocking procedure has converged, i.e. that you
see the ‘plateau’ in the plot of error bar versus reblock transformation number.

0 5 10 15 20 25
k

0.00000

0.00001

0.00002

0.00003

0.00004

 ~ σ E (
k)

 (
a.

u.
)

lo
g 2(τ

)

lo
g 2(τ

m
ax

)

The reblock utility may also be used to do more sophisticated statistical analysis of
the data in the vmc.hist and/or dmc.hist files than is done by casino itself.

– Typeset by FoilTEX – 24

Corrected error bars in the output file

New casino output (silane, 2000000 moves then another 2000000):

|
RESTART
↓

– Typeset by FoilTEX – 25

DMC statistics

0 500 1000 1500

Number of moves

-55.8

-55.7

-55.6

-55.5

-55.4

Local energy (Ha)

Reference energy

Best estimate

0 500 1000 1500
1000

1100

1200

1300

1400

1500

POPULATION

ED ≈ Ē =

∑M
i=1wiEi∑M
i=1wi

σ2
Ē ≈ σ̃

2
Ē =

∑M
i=1wi

(
Ei − Ē

)2
M

(∑M
i=1wi −

∑M
i=1w

2
i∑M

i=1wi

)
Plots like this are produced by typing ‘graphdmc’

in a directory containing a dmc.hist file.

• Clearly when we are computing DMC averages we need to omit the data from
the initial ‘equilibration phase’ and wait until the data are fluctuating around an
approximately constant value.

• The DMC energy printed in the output file does not check this. It merely
knows that you did dmc equil nstep moves of DMC equilibration, and
dmc stats nstep moves of DMC statistics accumulation. The reported energies
and error bars are the average of the latter.

• You should always check the DMC calculation visually using the graphdmc utility.
If you need to e.g. omit more of the initial data, then the averages and error bars
for different ranges of steps can be recomputed using the reblock utility.

– Typeset by FoilTEX – 26

Sources of error in DMC

• Timestep: we have assumed that this is small
→ strictly speaking must extrapolate to zero timestep to obtain a reliable result
→ cannot use timestep to improve statistics

• Population: the DMC wave function Ψ is represented by a set of configurations
→ must use sufficient configurations to represent it accurately
→ possible to extrapolate to infinite population

• Fixed-node error: only limitation of DMC
→ EDMC is still variational (very important!)
→ can be reduced by using trial wave function ΦT with better nodes

• Locality approximation: from pseudopotentials
→ EDMC in principle non-variational
→ goes away with good ΦT

– Typeset by FoilTEX – 27

Starting and stopping a QMC run: the traditional method

VMC

DMC

In VMC and DMC we tell casino how many samples to take (‘nstep’ - divided up amongst all

cores). In DMC also have an ensemble of configurations with a varying population of (on average)

dmc target weight walkers, each independently carrying out it own random walk of nstep steps.
– Typeset by FoilTEX – 28

Will the error bar be small enough after nstep moves?

Nobody knows.. If it isn’t, we restart from the saved state at the end of the previous
run (‘newrun=F’) and continue for another nstep moves. Repeat as necessary.

VMC

DMC

Not automatic! Can we do better?

– Typeset by FoilTEX – 29

Motivation I: Tim Mueller and other crazy people.

Slide borrowed from Tim Mueller’s talk ‘Quantum Monte Carlo for materials design’
here in Vallico Sotto last year:

Sounds valiantly overoptimistic, but let’s go along with it..

– Typeset by FoilTEX – 30

Motivation II: HF/DFT codes

Wouldn’t it be nice to be able to do this (output from the crystal program):

% vi silicon

% runcrystal silicon

% ls

silicon silicon.o silicon.w

% grep ’CYC’ silicon.o

– Typeset by FoilTEX – 31

The New Plan

So, let’s make casino monitor the statistical error bar on the fly

in QMC, run the calculation for as many moves as are necessary to

reduce the error bar to a value which is ‘small enough’, whatever that

might mean, then stop automatically.

It would also be nice if we could automatically figure out when the

Metropolis and/or DMC equilibration has converged, so we don’t have

to specify the number of equilibration moves..

It isn’t, or shouldn’t be, rocket science..

But I’m not aware of any other codes that do anything like this..

– Typeset by FoilTEX – 32

Automatic QMC: problems to solve

• How to make selection of block length automatic?

• How to stop calculation when we achieve a certain error bar (this is clearly not
as easy as ‘stopping the first time the error bar fluctuates below a fixed target..’)

• How to stop the calculation wasting resources if people request a target error bar
that is ‘too small’. Requires estimation of how many more samples (and hence
how much more time) will be required in the future to achieve target, plus some
definition of what a ‘reasonable time’ would be.

• Improving the error bar below a certain level will eventually be ‘statistically
meaningless’. How to work out what that means in practice?

• How to figure out whether ‘equilibration’ has been achieved (in VMC or DMC)
so that the user doesn’t need to specify the number of equilibration moves.?

– Typeset by FoilTEX – 33

Just to be clear: what is a ‘block’ in VMC?

Run is divided into vmc nblock blocks of post-equilibration moves. Number of
blocks determines how often the output, history and checkpoint files are written to
disk. More specifically, at the end of each block:

• The processor- and block-averaged energies are calculated and a short ‘report’
are written to the output file (‘out’ in casino).

• The processor-averaged quantities for each step in the current block are appended
to a history file (‘vmc.hist’ for energies, ‘expval.data’ for everything else).

• Current VMC state plus any accumulated configs required for optimization or
DMC written to a checkpoint file (‘config.out’ in casino) Configs created
from ‘snapshots’ of sequential VMC run which are as widely spaced as possible..

Note that:
• Total energy and error bar should be independent of vmc nblock (though there

are cases where error bar will differ, for reasons too boring to explain).

• People running casino often use many blocks, perhaps because they
misunderstand what a block is. Frequent writing to disk only slows the code
down - thus default vmc nblock=1. Useful keyword: ‘checkpoint’ - turns off
writing checkpoint files, either completely or everywhere except end of run.

– Typeset by FoilTEX – 34

Just to be clear: what is a ‘block’ in DMC?

Pretty much the same as a VMC block, with the following differences:

• Data written to the history file (‘dmc.hist’ in casino) is averaged over the
DMC ensemble (i.e. over configs) as well as processors.

• If requested by the user, a backup copy of the checkpoint file can be made to
allow for ‘automatic catastrophe protection’, which involves returning to the start
of the previous block. This is the main reason for wanting to use multiple blocks
in casino.

• As DMC calculations are much more likely to be cut short by time constraints, a
status file (‘dmc.status’) is written at the end of each block containing what
the final result would be if the calculation ended at that point. This is deleted
and the information written to the output file at the end of the final block.

One important difference between VMC and DMC, which will be important for
algorithmic purposes, is that in DMC the energies are averaged over processors at
the end of every move but in VMC only at the end of every block. Clearly if we
want to do a real time analysis of the error bar so we know when to stop, this is
going to make VMC harder to handle. For once...

– Typeset by FoilTEX – 35

Problem 1: blocks

• For doing actual science, we are mainly interested in DMC calculations.

• In DMC the main purpose of a block is to implement catastrophe recovery in
which case a block defines ‘how much time I am willing to waste if the calculation
goes wrong ’, and checkpointing - so that I don’t have to do everything again if
the system kills my jobs because it’s run out of time.

• It also has a secondary meaning, related to the impatience of the user; how often
does he need reassuring that the calculations is proceeding according to plan by
something being written to the output file..

• These are all measures of time. It is not clear a priori how time is related to
‘number of moves in a block’ (this is a function of system size, basis set, etc..).

So why not just base the block length on the time?

This will also help with automatic stopping methods, which sometimes need access
to information computed only at the end of a block. We must therefore be able to
control directly the time per block.

– Typeset by FoilTEX – 36

Solution 1: blocks

New keyword: block time

“If block time greater than 0.d0, then the number of blocks of moves

implied by vmc nblock, dmc equil nblock, or dmc stats nblock will be

ignored. Instead, casino will do everything it normally does at the

end of a block approximately every block time seconds of CPU time.”

Relatively straightforward to implement. Only things requiring thought:

• Method of computing final energy/error bar from average of block averages and
block error bars previously assumed all blocks were of the same length. Variable
length blocks a significant extra complication needing a fair bit of rewriting.

• Since parallel VMC processes don’t communicate except at the end of a block,
the elapsed CPU time needs to be measured on the master process and the slave
processes then ordered to finish their blocks when block time is exceeded on the
master. If the slaves have not yet done the same number of steps as the master,
they carry on until they have. If they’ve done more, the extra steps are discarded
and the calculation ‘rewound’ a little bit on the corresponding slaves.

• This ‘rewinding’ introduces indeterminancy in the random number generator
(unless I do some fairly complex modifications) meaning that the error bar on
repeated identical VMC calculations will no longer be exactly reproducible.

– Typeset by FoilTEX – 37

Result 1: block time = 10.0 s

No reason block time > 0 can’t be the default from now on.

– Typeset by FoilTEX – 38

Problem 3: stop on target error bar

After an initial transient of 500-1000 moves, the error bar behaves nicely and
decreases relatively smoothly with something like the expected 1/

√
N .

– Typeset by FoilTEX – 39

Problem 3: stop on target error bar

After an initial transient of 500-1000 moves, the error bar behaves nicely and
decreases relatively smoothly with something like the expected 1/

√
N .

– Typeset by FoilTEX – 40

Problem 3: stop on target error bar

After an initial transient of 500-1000 moves, the error bar behaves nicely and
decreases relatively smoothly with something like the expected 1/

√
N .

– Typeset by FoilTEX – 41

How to control different stopping methods

New input keywords: stop method, target error, stop time

• The stop method keyword defines how a VMC/DMC run is to be terminated. It may take the

values ‘nstep’, ‘target error’, or ‘small error ’.

• The classic method is ‘nstep’ which means simply perform the number of VMC/DMC steps

implied by the input keywords vmc nstep, dmc stats nstep then stop, and the error bar is

what it is (it may be too large or smaller than required).

• If stop method = ‘target error’ then the run will continue until the error bar on the total

energy (corrected on the fly for serial correlation) is approximately equal to that defined by the

target error input keyword, subject to the constraint that the estimated CPU time required on

the master process (summed over restarts if necessary) will not exceed stop time. casino is

able to approximately estimate the required time by analyzing how the error bar decreases as a

function of the number of moves, and as soon as it is reasonably confident that the desired target

error is too small and cannot be reached, then the code will stop (in a restartable condition). On

halting in this manner, an estimate of the CPU time required to get a range of error bars will be

written to the output file. Note that the method used to estimate the required time assumes the

validity of the central limit theorem, which is only approximately valid in this case.

• If stop method = ‘small error’, casino will attempt to make the error bar as small as

possible in a ‘reasonable time’ defined by the value of the stop time keyword. ‘As small as

possible’ means what it says, but taking account of the fact that there is an error bar on the

error bar and it is somewhat pointless to reduce the error bar below its significant precision.

• Note in both the last two cases casino has a minimum run length needed to get a reasonable

estimate of the variance.

– Typeset by FoilTEX – 42

Naive DMC implementation

“Stop as soon as the on-the-fly-reblocked error bar goes below target error.”

stop method=target error, target error=0.005, stop time=1 day

However, doing it like this potentially introduces bias. We have to be more careful..!

– Typeset by FoilTEX – 43

How to define proper stopping condition

• Stopping when continuously-monitored error bar falls below target guarantees the
error bar will be underestimated and the calculation halted too soon.

• This is because when the reblocked error bar falls below the threshold it is bound
to be on a negative fluctuation below its mean, i.e., the error bar will be less
than its underlying mean.

• Put another way, suppose you run a simulation and find that it halts after N
steps because the error bar is smaller than some criterion. The reblocked error
bar will be significantly smaller on average than the error bar you get if you
perform a second, independent run of precisely N steps.

• Not clear a priori how important this is for a general system, but error bars on
the error bars can be pretty large (see typical reblock plots) and possibly not
well-defined due to the tails of the local-energy distribution.

– Typeset by FoilTEX – 44

Empirical convergence

• Usually use CLT to provide basis for assessing statistical error of approximation
for large N .

• Accuracy depends on rate at which actual distribution converges to target
distribution.

• Without any information on convergence, the approximation to normality is an
additional source of error for any finite sample size.

However, if the upper and lower bounds are known for a random variable, this error
of approximation to normality can be eliminated using a distribution-free technique.
One such way is to look for a ‘convergence band ’ (CB) of a given width and length
such that the probability of the QMC sample means to fall outside of this band is
‘practically zero’. In this context the width is twice the target error and the length
is an appropriate number of moves to ensure probability is in fact practically zero.

– Typeset by FoilTEX – 45

The convergence band

We are requiring that the range of fluctuating mid points of actual confidence
intervals of the DMC sample mean energy, has reduced to an acceptable value which
is certainly smaller than ±target error=ε.

Construct sequential interval always covering the DMC sample means as follows:

• When the error bar first fluctuates below target error, ‘turn on’ the convergence
band, centred at the current best estimate of the DMC energy EDMC.

• Keep executing DMC moves. If the new DMC energy is in the range EDMC ± ε
then increment a counter MCB and continue. Otherwise, revert the MCB counter
to zero, and recentre the convergence band at EDMC + ε.

• Continue until MCB equal to convergence band length, at which point stopping
criterion for stop method=target error is attained..

What is the optimal value of the convergence band length?

• Define set of bins for convergence band lengths 1 to 100 (say). Every time mean
energy fluctuates outside convergence band, increment counter for MCBth bin.

• Determine empirically, averaged over a range of already equilibrated systems.

• Convert bin counters into probability (will be decreasing function of MCB). Find
where probability effectively zero (the convergence band length). About 50 seems
to be good value (more investigation required; timestep dependence, etc...).

– Typeset by FoilTEX – 46

Time-proofing

• Say it takes 100 seconds to reach target error=0.001. To achieve 0.0001 we
would expect 10000 seconds (nearly 3 hours - reasonable), and to achieve 0.00001
would require around 1000000 seconds (nearly 2 weeks - probably not reasonable).

• The definition of ‘reasonable’ is now handled by the new stop time keyword.

• Hence introduce new procedure to stop as quickly as possible (in a restartable
condition) if target error bar is unreasonable, with a suggestion for what target
errors are possible to achieve.

• Formula for number of required moves to get error bar = target error:

N = z2
C/2 ×

sample variance

target error2

where C = confidence level (e.g. 0.9), and zC/2 is the inverse normal distribution,
which maps e.g. 0.68 onto 1 (sigma) and 0.99 onto 2 (sigma) etc. We usually
set this to 1.

• Can’t do this at the start because we don’t know the sample variance.

– Typeset by FoilTEX – 47

How long does it take sample variance to behave?

A lot longer than the error bar!

– Typeset by FoilTEX – 48

Time proofing

Now implemented. Bit inaccurate, but obviously useful..

casino reports ‘Insufficient data’ until the variance starts behaving itself.

– Typeset by FoilTEX – 49

How to compare quantities with error bars
• Want to find distribution of difference, denoted(

Ē− ± σ−
)

=
(
Ē1 ± σ1

)
−
(
Ē2 ± σ2

)
• Results in Ē− = Ē1 − Ē2 and σ2

− = σ2
1 + σ2

2

Example:

• Ψ1 gives E1= −14.66728(2) a.u.

• Ψ2 gives E2= −14.66733(7) a.u.

• Comparison: E−= 0.00005(7) a.u. → 76% chance of E2 < E1 → unreliable!

• If E2= −14.66733(2) a.u. instead → E−= 0.00005(3) a.u. → 95% chance of
E2 < E1 → reliable

Is random error an ‘extra’ error?
• Computers cannot do integration exactly.

• All methods do integration approximately.

• Finite basis sets → basis set error unknown but controlled.

• Quadrature on grid → quadrature error unknown but controlled.

• Monte Carlo → random error is known and controlled.

QMC has a different type of integration error.

– Typeset by FoilTEX – 50

Coffee (well deserved)

– Typeset by FoilTEX – 51

