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Programme for Sunday

8.30am Lecture 1 Basic theory: variational and diffusion Monte Carlo

11.00am BREAK

11.15am Lecture 2 Introduction to the casino program

12.15am Lecture 3 Distribution, setup, and compilation of casino.
Local and remote computer resources.
Applying for computer time. Web resources.

12.45 LUNCH Village bar

1.45pm QMC Q+A Ask Neil and Mike.
What do you want to do with QMC?

4pm EXCURSION Alta Matanna (3pm for Monte Procinto)

7.30pm DINNER

c. 10.30pm Mike and Sam will be available in the church
for help with casino setup on personal machines.
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FIRST PRINCIPLES CALCULATIONS

Atomic numbers

↓

Solve the quantum mechanical equations for the electrons

↓

(Follow the time evolution of the nuclei)

↓

Understand and predict physical and chemical properties of the system
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Why?

synthetic 
chemistry

drug 
design

materials
design

turbines,
bridges ...

mechanical  properties 
of materials chemical reactions

properties of defects

forces on atoms

quantum mechanics 
+ atomic numbers
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Electronic Structure Theory

Justification for the existence of the Cambridge TCM group

Ab initio electronic structure calculations of materials complement experiments, by

• helping to understand the results of real experiments

• calculating things that are experimentally inaccessible or cost money

• providing an atomic scale resolution beyond most experiments

• calculating things which don’t exist (in experiments we are usually stuck with the
lowest free energy phase unless there is a large activation energy so that metastable
phases can be studied)

This is generally done by ‘solving the Schrödinger equation’ entirely from first principles
with no adjustable parameters.
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Electronic Structure Theory

Justification for the existence of the Cambridge TCM group

Ab initio electronic structure calculations of materials complement experiments, by

• helping to understand the results of real experiments

• calculating things that are experimentally inaccessible or cost money

• providing an atomic scale resolution beyond most experiments

• calculating things which don’t exist (in experiments we are usually stuck with the
lowest free energy phase unless there is a large activation energy so that metastable
phases can be studied)

This is generally done by ‘solving the Schrödinger equation’ entirely from first principles
with no adjustable parameters.

PLUS since we can only do this approximately, we try to

• improve the approximations to get better accuracy

• improve the speed and scaling behaviour of the algorithms

• work out how to use the theory to calculate new things

PLUS, as a service to the scientific community,

• we write generally applicable computer codes which do all of the above.
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Newtonian
(Continuum
Mechanics)

Pair Potentials

Semi-empirical
e.g. tight-binding

Density functional
theory

Wave function methods
(Hartree-Fock to CI and
coupled-cluster theory)

Quantum
Monte Carlo

Fast
Large
Qualitative
Non-transferable

Slow
Small
Quantitative
Transferable

– Typeset by FoilTEX – 9



The cliché of Paul Dirac

“The fundamental laws necessary for the mathematical treatment of a large part of
physics and the whole of chemistry are thus completely known, and the difficulty lies
only in the fact that application of these laws leads to equations that are too complex
to be solved.”



The cliché of Paul Dirac

“The fundamental laws necessary for the mathematical treatment of a large part of
physics and the whole of chemistry are thus completely known, and the difficulty lies
only in the fact that application of these laws leads to equations that are too complex
to be solved.”.

NONSENSE!
That was in 1928. We can do better now - because we have quantum Monte Carlo.

And one of these..
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What is quantum Monte Carlo?
QMC is, essentially, ‘accurate calculation of the properties of assemblies of interacting
quantum particles using random sampling of the full many-body Schrödinger wave
function..’ For my purposes, it is applied to ‘continuum fermion’ cases i.e. realistic
atoms, molecules, and crystalline solids rather than bosonic systems or lattice models.

Why use wave functions? We work directly with the many-body wave function
Ψ(x1,x2, . . . ,xN) rather than the density ρ(x) since we can write down exactly the
equation that Ψ obeys (a very helpful thing to do when requiring accuracy . . . ):

ĤΨ = EΨ

• Variational Monte Carlo (VMC) - a cheaper less accurate technique which directly
computes expectation values such as the one below using standard Monte Carlo
numerical integration. May also involve optimization of Ψ by direct variation of
any parameters upon which it depends. Limited by flexibility of parameterization..

EVMC =

∫
ΨĤΨ dx∫

Ψ2 dx

• Diffusion Monte Carlo (DMC) - a more sophisticated, accurate (and expensive)
method which - in principle - projects out the exact ground state wave function
from a given ‘starting guess’ and then computes expectation values as above.
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Large systems
Anyone can solve the Schrödinger equation as accurately as you like for a few particles
- that’s a given. The key point is scaling with system size - in the modern age N7 will
not do. How can one address the problem for a huge molecule or a crystalline solid?

ĤΨ =

6×1023∑
i=1

(
− h̄

2

2m
∇2
iΨ− Ze2

∑
R

1

|ri −R|
Ψ

)
+

1

2

∑
i6=j

e2

|ri − rj|
Ψ = EΨ

In Ashcroft and Mermin’s Solid State Physics (p. 330) it says“One has no hope of
solving an equation such as [this]. Further progress requires some simplifying physical
idea.” Thus introduce one-electron orbitals and develop Hartree-Fock approximation.

In fact, to do calculations with many-body wave functions in a solid, just need periodic
boundary conditions. Largest QMC calculations done so far: e.g. liquid and solid iron
(1500-2000 electrons per cell) by Dario Alfè’s group at UCL.

Walter Kohn’s objection: “..the many-electron wave function is not a legitimate
scientific concept for more than about N = 1000 particles..”[Nobel prize speech: RMP 71, 1253 (1999)]

Oh dear! Says this because overlap of approximate Ψ with exact Ψ tends exponentially
to zero as N increases, unless one uses number of parameters exponentially increasing
with N . Not relevant to QMC - just need good description of relatively low-order
correlation functions (e.g. PCFs) to get total energy correct. And Kohn’s argument
surely applies to determinant of approximate Kohn-Sham orbitals as well?
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Good things about DMC

• ‘Chemical accuracy’ (1 kcal/mol or 0.04 eV) and beyond readily achievable. Can
feed results of standard DFT/HF/etc.. calculations into a QMC code and greatly
‘improve’ the answer. Provides reliable benchmarking comparable to CCSD(T).

• Required computer time scales as N3 with system size (improvable to N2 with
some extra complication). Very favourable compared to standard correlated wave
function methods (up to N7 for similar accuracy).

• QMC algorithm intrinsically parallel. With certain caveats speed of calculation
increases linearly with number of processors (tested in practice to more than half
a million cores). Can therefore fully exploit top-of-the-range supercomputers and
other modern hardware including - in principle - GPUs. Most standard methods
cannot exploit more than a few thousand processors..

• ‘Natural’ description of electron correlation. Uses arbitrarily complex many-electron
Ψ with no need for analytic integrability. No BSSE or size consistency problems.
Not overly dependent on basis set quality - Ψ not represented by basis set.

• Can calculate ground states, excited states, chemical reaction barriers and other
properties within single unified methodological framework to high accuracy, based
solely on the variational principle. Works for finite or periodic systems.

QMC is essentially the only highly accurate method whose cost can be made to scale
reasonably with system size without significantly degrading the quality of the answer.
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Why use QMC when we can use DFT?
“Ψ is a high-dimensional object, dependent on 3N electron Cartesian coordinates, N electron spin coordinates, and 3Nn nuclear coordinates. For
a molecule such as benzene, with 12 nuclei and 42 electrons, this object exists in 162 − 6 = 156-dimensional Cartesian space! The determinant

has 42! = 1.4 × 1051 terms! We can’t even make a picture of it. If we were to store it as a numerical object, with a resolution of 0.1 au out

to 10 au, we would need 10312 numbers to store, at single precision (4 bytes/number), at 2 Gbytes/cm2 (counting electrical connections access),

we would need more than 10293 km2 of surface to store that information. The Earth has a surface area of less than 109 km2. The promised
knowledge hidden in the Schrödinger equation is not quite easily accessible! We must make do with much much less. How much less can we do
with?” [from an online DFT course]

DFT texts always begin by saying it is better to use the density - which depends on 3 variables -

instead of Ψ - which depends on 3N variables - and thus we use DFT. Fine - who has 10284 planets

after all? - but (a) in QMC we don’t represent Ψ everywhere in configuration space - we just sample

it, and (b) unfortunately the equation satisfied by the density is simply not known:

E[ρ] = T [ρ] +
∫
Vext(x)ρ(x) dx+ VH[ρ] + ??Exc[ρ]??

Exchange-correlation functionals are serious uncontrolled approximations..

• There are large classes of problem for which DFT gives qualitatively the wrong answer (weak

interactions, strongly-correlated systems, energy differences between different types of system, etc.)

• Huge dependence on XC functional. Answers not reliable i.e. even for functionals which give better

results on average, there is no guarantee it gives better answers for any single system.

• Many DFT users are unaware of this, and consider their results to be the ‘quantum’ answer. Until

recently - particularly in periodic systems - no benchmark method available to check accuracy.
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Why use QMC instead of proper quantum chemistry methods?

• Usually takes serious computational effort to be accurate enough (e.g. the ‘gold
standard’ CCSD(T) extrapolated to complete basis limit).

• In principle can solve the Schrödinger equation as accurately as you like - just do
full CI with a complete basis set. This is not the point. The key point is scaling
of computer time with system size - in the modern age N7 will not do - as such
calculations quickly become impossible. We need to scale at most as a low-order
polynomial to do most problems of technological interest. QMC can do this.

• In general, you can do higher-order quantum chemistry techniques for atoms and
molecules but not for periodic systems such as crystalline solids.

• QMC is not restricted to the regular paradigm of expanding the many-electron
wave function in a basis set of differently occupied many-electron determinants
constructed from orbitals expanded in analytically integrable Gaussian basis sets. If
a mathematical expansion requires millions or billions of terms to converge, this is
normally taken to mean that the basis set is very poor. Why should the quantum
chemistry case be any different?

• Note that real wave functions have a cusp (gradient discontinuity) as an electron
passes through a nuclear position - this is impossible to represent with a set of
Gaussian functions all with zero gradient at the nucleus.

• Difficult to efficiently exploit many processors on large computers with QC methods.
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What’s wrong with QMC?

• Need to do a preparatory calculation with someone else’s HF/DFT code, and your
QMC software must have an explicit interface to that code. Often people find that
their HF/DFT code of choice is not supported, so they give up before they start.

• DMC is computationally expensive. Even though the scaling with system size is
good, there is a large pre-factor.. (c. 1000× slower than DFT).

• Difficult to compute forces and hence dynamics. Usually zero temperature.

• You will have no friends (both in the sense of being lonely - because to a first
approximation no-one else does it - and also because everybody hates a smartarse..)

QMC is not being advocated as a replacement for any of these other techniques -
which are all very useful in the spheres where they work; it should be considered as
the final building block in our atomic scale micro-laboratory of multiple techniques
that we use to simulate small parts of the real world.
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So how does QMC work? Some technical details..
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Monte Carlo integration

Alternative to traditional fixed-grid quadrature methods for evaluation of integrals,
the main difference being that the sampling points are chosen at random.

• I =
∫ b
a
f(x) dx = (b− a)f̄ with f̄ mean value of f(x).

• Unbiased estimate of f̄ is 〈f〉 = 1
M

∑M
i=1 f(xi) with the xi

randomly selected from the interval a ≤ xi ≤ b.

• Statistical uncertainty in 〈f〉 is given by σ =
σsample√

M
with σsample =√

〈f2〉 − 〈f〉2. If M large enough, estimate of the mean f̄ is

normally distributed (‘Central Limit Theorem’).

• For Monte Carlo integration, error decreases as the square root of the number of
sampling points ( i.e. as 1√

M
) irrespective of the dimensionality d of the integral.

• For a standard grid method such as the trapezium rule the error decreases as

O(M−
2
d). Monte Carlo wins in more than four dimensions.

• To make the estimate of a 100-dimensional integral ten times more accurate
requires 100 times more work with Monte Carlo integration. With the trapezium
rule it would require 1050 times more work!

• For N particle system we must do 3N -dimensional integrals. For high-dimensional
numerical integration there is effectively no alternative to Monte Carlo methods.
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How to sample things from probability distributions

In previous example, implicitly selected random points from uniform probability
distribution (i.e. from anywhere in interval with equal probability). Not sensible for

integral like
∫ +∞
−∞ e−x

2
dx - few if any points would lie in region where integrand is

finite. Thus required to sample points from non-uniform probability distributions.

Properties of probability distributions

• p(x) = probability density; p(x)dx = probability to be in interval (x, x+ dx).

• p(x) must be positive and normalized to unity:
∫
p(x)dx = 1

• Average values 〈f(x)〉 =
∫
p(x)f(x)dx with σ2 =

∫
p(x)f(x)2dx− 〈f(x)〉2.

To do Monte Carlo integration with a non-uniform distribution, generate set of M
points xi distributed according to desired p(x). This can be done using a random
walk moved according to the Metropolis algorithm. Then 〈f(x)〉 ' 1

M

∑
i f(xi) with

σ2 ' 1
M

∑
i f(xi)

2 −
(

1
M

∑
i f(xi)

)2
.

What is best p(x) to use? The one that minimizes the variance: pbest(x) = |f(x)|∫
|f(x′)| dx′.

Thus concentrate sampling points in regions where absolute value of integrand large
- importance sampling. Don’t in general know normalization though..

How does Metropolis work? Random walk moving from r to r′ with prob T (r −→ r′)

(e.g. Gaussian). Accept move with probability: a(r −→ r′) = min
[
1, T (r′−→r)p(r′)

T (r−→r′)p(r)

]
i.e. occasionally reject moves to regions of lower probability. Equilibration required.
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Many-electron wave functions

• Hartree product: ΨH = ψ1(x1)ψ2(x2) . . . ψN(xN)

• Single determinant:

ΨD =
1√
Ne

∣∣∣∣∣∣∣∣
ψ1(x1) ψ1(x2) . . . ψ1(xNe)
ψ2(x1) ψ2(x2)

... . . .
ψNe(x1) ψNe(xNe)

∣∣∣∣∣∣∣∣
• Single determinant Slater-Jastrow function: ΨDJ = ΨDΨJ

• Multi-determinant Slater-Jastrow function: ΨnDJ = (
∑n
i ciΨDi)ΨJ

• Multi- or single determinant Slater-Jastrow function with backflow

Jastrow factor ΨJ = exp (J ) is optimizable functional form for pair correlation, e.g.:

J =

Ne∑
i 6=j

[
−U0(rij)− U(rij) +

Nn∑
n

S
n
(ri, rj, rij)

]
and U0(rij) =

A

rij

(
1− exp

(
−
rij

F

))

with U power series expansion in e-e separation and Sn set of atom-centred functions
giving additional variational freedom in description of pair correlation near nuclei.

Backflow : replace coords xi in ΨD with collective coords ri({xj}) given by ri =
xi + ξi({xj}) with ξi configuration-dependent backflow displacement of particle i.
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Pair correlation function

Silicon with Slater-Jastrow wave functionVMC�g""(r; r0; [n])r at bond centerr0 in (110) plane
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Variational Monte Carlo
Stochastic integration method for evaluating expectation values for fixed trial many-
body wave function Ψ(x1, . . . ,xN) ≡ Ψ(x):

EVMC =

∫
Ψ∗ĤΨ dx∫
|Ψ|2 dx

=

∫
|Ψ|2(ĤΨ

Ψ ) dx∫
|Ψ|2 dx

(
≡
∫
p(x)f(x) dx

)
where f(x) = ĤΨ

Ψ ≡ EL = ‘local energy’ and p(x) = |Ψ|2/
∫
|Ψ|2 dx.
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Hydrogen atom VMC

• Generate M points distributed as |Ψ|2 and average local energies EVMC ' 1
M

∑
iEL(xi).

• Optimal probability density p(x) = |f(x)|/
∫
|f(x′)| dx′ = |Ψ∗ĤΨ|/

∫
Ψ∗ĤΨ dx but this

tends to |Ψ|2/
∫
|Ψ|2 dx as Ψ tends to exact wave function when ĤΨ = EΨ.

• As Ψ tends to exact wave function, fluctuations in EL tend to zero (the ‘zero variance principle’).

Effectively still a basis set method - you get out what you put in.
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Wave function optimization
Trial wave functions contain parameters (Jastrow, backflow, det coeffs etc.) that
must be optimized in VMC so Ψ has optimal functional form. Need objective function
to minimize with respect to parameter set {α} - generally choose energy or variance:

EV =

∫
Ψ2(α)EL(α) dx∫

Ψ2(α) dx
or var(E) =

∫
Ψ2(α)[EL(α)− EV(α)]2 dx∫

Ψ2(α) dx

Until recently more usual to minimize variance, because:

• It has a known lower bound of zero.

• It can be applied to excited states.

• Efficient algorithms known for minimizing objective functions expressible as sum of squares (for

many years energy minimization was considered to be a difficult numerical problem).

• Varmin-optimized trial-functions exhibits greater numerical stability than energy minimized ones in

DMC (there is a smaller tendency for population explosions).

Still default choice if want DMC energies with Slater-Jastrow trial function.

Now also common to minimize energy, because:

• Efficient, numerically-stable algorithms for doing so have been discovered.

• Since trial wave functions cannot represent eigenstate exactly, the energy and variance minima don’t

coincide. Energy minimization should therefore produce lower VMC energies (and consequently

better DMC wave functions - see later).

• Better at optimizing parameters that change nodal surface - significance will become clear shortly.

• Resulting wave functions give better forces (and some other properties).
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Practical optimization
Rewrite energy and variance for correlated sampling

EV =

∫
Φ2(α0) w(α) EL(α) dR∫

Φ2(α0) w(α) dR

Var(E) =

∫
Φ2(α0) w(α) [EL(α)− EV(α)]2 dR∫

Φ2(α0) w(α) dR

w(α) =
Φ2(α)

Φ2(α0)
Weight

Average over M configurations drawn from Φ2(α0)

EV '
∑M

i w(Ri;α)EL(Ri;α)∑M
i w(Ri;α)

Var(E) '
∑M

i w(Ri;α)[EL(Ri;α)− EV({Ri};α)]2∑M
i w(Ri;α)

• Eigenstates of Ĥ give zero variance for any set of configurations.

• Eigenstates of Ĥ give zero variance for any set of (positive) weights.

• In practice, unreweighted minimization is normally used! See later.
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Results of a VMC simulation

No Jastrow Optimized Jastrow

• Answer given as EVMC ± σ, where σ is some statistical error bar.

• Better Ψ give lower energy (variational principle) and smaller error bar.

• Statistical analysis required to eliminate serial correlation and get correct error bar.

Example results: cohesive energies

Method Si Ge C BN
LSDA 5.28 4.59 8.61 15.07
VMC 4.48±0.01 3.80±0.02 7.36±0.01 12.85±0.03
Exp. 4.62 3.85 7.37 12.9

Not bad but not brilliant either..
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VMC is not enough

VMC results are OK (might recover 75− 85% of correlation energy) - not really good
enough to be worth the effort. Results highly dependent on trial wave function and
basis set quality. Problem is one of complexity - not clear how to make arbitrarily
accurate wave functions this way.

However, there is a class of methods - collectively called projector Monte Carlo -
which in principle solve quantum problems exactly. Idea is to project out ground state
by repeated iteration of a projection operator. After many iterations the excited state
|Ψi〉 contributions are filtered out and the ground state is recovered.

Such methods depend upon guessed properties of many-body Ψ only in computational
efficiency, if at all. Diffusion Monte Carlo (DMC) is one such method.

Characteristics of diffusion Monte Carlo

• Systematically improves Ψ through magic process: stochastic propagation in imaginary time.

• Extremely weakly dependent on basis set quality.

• Scales as N3 or better with system size.

• Taken to limit, comparable in accuracy with benchmark quantum chemistry correlated methods.

The main use of VMC in practical calculations is to prepare the

input for a diffusion Monte Carlo simulation.
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Projector methods

First suggestion of Monte Carlo solution of Schrödinger equation dates back to Fermi.
Showed that a solution of the stationary state equation,

−1

2
∇2Ψ(R) = EΨ(R)− V (R)Ψ(R)

could be obtained by introducing a time-dependent wave function of the form
Ψ(R, τ) = Ψ(R)e−Eτ . This will obey the equation

∂Ψ(R, τ)

∂τ
=

1

2
∇2Ψ(R, τ)− V (R)Ψ(R, τ)

and in the long time limit, look like the ground state solution to the first equation.
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Projector methods

First suggestion of Monte Carlo solution of Schrödinger equation dates back to Fermi.
Showed that a solution of the stationary state equation,

−1

2
∇2Ψ(R) = EΨ(R)− V (R)Ψ(R)

could be obtained by introducing a time-dependent wave function of the form
Ψ(R, τ) = Ψ(R)e−Eτ . This will obey the equation

∂Ψ(R, τ)

∂τ
=

1

2
∇2Ψ(R, τ)− V (R)Ψ(R, τ)

and in the long time limit, look like the ground state solution to the first equation.

• Ignore 2nd term on RHS, equation is isomorphic with a diffusion equation, which can
be simulated by a random walk where random walkers diffuse in an R-dimensional
space.
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Projector methods

First suggestion of Monte Carlo solution of Schrödinger equation dates back to Fermi.
Showed that a solution of the stationary state equation,

−1

2
∇2Ψ(R) = EΨ(R)− V (R)Ψ(R)

could be obtained by introducing a time-dependent wave function of the form
Ψ(R, τ) = Ψ(R)e−Eτ . This will obey the equation

∂Ψ(R, τ)

∂τ
=

1

2
∇2Ψ(R, τ)

and in the long time limit, look like the ground state solution to the first equation.

• Ignore 2nd term on RHS, equation is isomorphic with a diffusion equation, which can
be simulated by a random walk where random walkers diffuse in an R-dimensional
space.
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Projector methods

First suggestion of Monte Carlo solution of Schrödinger equation dates back to Fermi.
Showed that a solution of the stationary state equation,

−1

2
∇2Ψ(R) = EΨ(R)− V (R)Ψ(R)

could be obtained by introducing a time-dependent wave function of the form
Ψ(R, τ) = Ψ(R)e−Eτ . This will obey the equation

∂Ψ(R, τ)

∂τ
= − V (R)Ψ(R, τ)

and in the long time limit, look like the ground state solution to the first equation.

• Ignore 2nd term on RHS, equation is isomorphic with a diffusion equation, which can
be simulated by a random walk where random walkers diffuse in an R-dimensional
space.

• Ignore 1st term, have first order kinetics equation with position-dependent rate
constant V (R) (interpret as stochastic survival probability).
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Projector methods

First suggestion of Monte Carlo solution of Schrödinger equation dates back to Fermi.
Showed that a solution of the stationary state equation,

−1

2
∇2Ψ(R) = EΨ(R)− V (R)Ψ(R)

could be obtained by introducing a time-dependent wave function of the form
Ψ(R, τ) = Ψ(R)e−Eτ . This will obey the equation

∂Ψ(R, τ)

∂τ
=

1

2
∇2Ψ(R, τ)− V (R)Ψ(R, τ)

and in the long time limit, look like the ground state solution to the first equation.

• Ignore 2nd term on RHS, equation is isomorphic with a diffusion equation, which can
be simulated by a random walk where random walkers diffuse in an R-dimensional
space.

• Ignore 1st term, have first order kinetics equation with position-dependent rate
constant V (R) (interpret as stochastic survival probability).

A numerical simulation in which random walkers diffuse through R-space, reproduce
in regions of low potential, and die in regions of high potential leads to a stationary
distribution proportional to Ψ(R), from which expectation values can be obtained.
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Projector methods

General idea is to project out a state of the Hamiltonian by iteration of a projection
operator P̂ . Assume ground state for simplicity.

lim
i−→∞

P̂ i|ΨT 〉 ≈ |Ψ0〉

After sufficient iterations i, the contribution of all excited states |Ψi〉 will be filtered
out and only the ground state is recovered.

If ΨT is a vector and P is a matrix then the procedure implied by this is just a
standard piece of matrix algebra called the power method.
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Power method

•Diagonalizable n× n matrix A i.e. X−1AX = diag (λ1, λ2, . . . , λn)

•X = [x1, x2, . . . , xn] matrix of eigenvectors

•q = (1, 0, 0, 0, . . .) unit norm vector

do k = 1,2,...
z(k) = matmul[A,q(k-1)]
q(k) = z(k) / norm[z(k)]
λ(k) = [q(k)]−1 A q(k)
enddo

A =

−261 209 −49
−530 422 −98
−800 631 −144

 q(0) = (1, 0, 0)

λ(A) = (10, 4, 3)



Power method

•Diagonalizable n× n matrix A i.e. X−1AX = diag (λ1, λ2, . . . , λn)

•X = [x1, x2, . . . , xn] matrix of eigenvectors

•q = (1, 0, 0, 0, . . .) unit norm vector

do k = 1,2,...
z(k) = matmul[A,q(k-1)]
q(k) = z(k) / norm[z(k)]
λ(k) = [q(k)]−1 A q(k)
enddo

A =

−261 209 −49
−530 422 −98
−800 631 −144

 q(0) = (1, 0, 0)

λ(A) = (10, 4, 3)

•Only dominant eigenvector survives after large number of iterations.



Power method

•Diagonalizable n× n matrix A i.e. X−1AX = diag (λ1, λ2, . . . , λn)

•X = [x1, x2, . . . , xn] matrix of eigenvectors

•q = (1, 0, 0, 0, . . .) unit norm vector

do k = 1,2,...
z(k) = matmul[A,q(k-1)]
q(k) = z(k) / norm[z(k)]
λ(k) = [q(k)]−1 A q(k)
enddo
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−530 422 −98
−800 631 −144

 q(0) = (1, 0, 0)

λ(A) = (10, 4, 3)

•Only dominant eigenvector survives after large number of iterations.

k λ(k)
1 13.0606



Power method

•Diagonalizable n× n matrix A i.e. X−1AX = diag (λ1, λ2, . . . , λn)

•X = [x1, x2, . . . , xn] matrix of eigenvectors

•q = (1, 0, 0, 0, . . .) unit norm vector

do k = 1,2,...
z(k) = matmul[A,q(k-1)]
q(k) = z(k) / norm[z(k)]
λ(k) = [q(k)]−1 A q(k)
enddo

A =

−261 209 −49
−530 422 −98
−800 631 −144

 q(0) = (1, 0, 0)

λ(A) = (10, 4, 3)

•Only dominant eigenvector survives after large number of iterations.

k λ(k)
1 13.0606
2 10.7191



Power method

•Diagonalizable n× n matrix A i.e. X−1AX = diag (λ1, λ2, . . . , λn)

•X = [x1, x2, . . . , xn] matrix of eigenvectors

•q = (1, 0, 0, 0, . . .) unit norm vector

do k = 1,2,...
z(k) = matmul[A,q(k-1)]
q(k) = z(k) / norm[z(k)]
λ(k) = [q(k)]−1 A q(k)
enddo

A =

−261 209 −49
−530 422 −98
−800 631 −144

 q(0) = (1, 0, 0)

λ(A) = (10, 4, 3)

•Only dominant eigenvector survives after large number of iterations.

k λ(k)
1 13.0606
2 10.7191
3 10.2703



Power method

•Diagonalizable n× n matrix A i.e. X−1AX = diag (λ1, λ2, . . . , λn)

•X = [x1, x2, . . . , xn] matrix of eigenvectors

•q = (1, 0, 0, 0, . . .) unit norm vector

do k = 1,2,...
z(k) = matmul[A,q(k-1)]
q(k) = z(k) / norm[z(k)]
λ(k) = [q(k)]−1 A q(k)
enddo

A =

−261 209 −49
−530 422 −98
−800 631 −144

 q(0) = (1, 0, 0)

λ(A) = (10, 4, 3)

•Only dominant eigenvector survives after large number of iterations.

k λ(k)
1 13.0606
2 10.7191
3 10.2703
4 10.0633



Power method

•Diagonalizable n× n matrix A i.e. X−1AX = diag (λ1, λ2, . . . , λn)

•X = [x1, x2, . . . , xn] matrix of eigenvectors

•q = (1, 0, 0, 0, . . .) unit norm vector

do k = 1,2,...
z(k) = matmul[A,q(k-1)]
q(k) = z(k) / norm[z(k)]
λ(k) = [q(k)]−1 A q(k)
enddo

A =

−261 209 −49
−530 422 −98
−800 631 −144

 q(0) = (1, 0, 0)

λ(A) = (10, 4, 3)

•Only dominant eigenvector survives after large number of iterations.

k λ(k)
1 13.0606
2 10.7191
3 10.2703
4 10.0633
5 10.0198



Power method

•Diagonalizable n× n matrix A i.e. X−1AX = diag (λ1, λ2, . . . , λn)

•X = [x1, x2, . . . , xn] matrix of eigenvectors

•q = (1, 0, 0, 0, . . .) unit norm vector

do k = 1,2,...
z(k) = matmul[A,q(k-1)]
q(k) = z(k) / norm[z(k)]
λ(k) = [q(k)]−1 A q(k)
enddo

A =

−261 209 −49
−530 422 −98
−800 631 −144

 q(0) = (1, 0, 0)

λ(A) = (10, 4, 3)

•Only dominant eigenvector survives after large number of iterations.

k λ(k)
1 13.0606
2 10.7191
3 10.2703
4 10.0633
5 10.0198
6 10.0063



Power method

•Diagonalizable n× n matrix A i.e. X−1AX = diag (λ1, λ2, . . . , λn)

•X = [x1, x2, . . . , xn] matrix of eigenvectors

•q = (1, 0, 0, 0, . . .) unit norm vector

do k = 1,2,...
z(k) = matmul[A,q(k-1)]
q(k) = z(k) / norm[z(k)]
λ(k) = [q(k)]−1 A q(k)
enddo

A =

−261 209 −49
−530 422 −98
−800 631 −144

 q(0) = (1, 0, 0)

λ(A) = (10, 4, 3)

•Only dominant eigenvector survives after large number of iterations.

k λ(k)
1 13.0606
2 10.7191
3 10.2703
4 10.0633
5 10.0198
6 10.0063
7 10.0020



Power method

•Diagonalizable n× n matrix A i.e. X−1AX = diag (λ1, λ2, . . . , λn)

•X = [x1, x2, . . . , xn] matrix of eigenvectors

•q = (1, 0, 0, 0, . . .) unit norm vector

do k = 1,2,...
z(k) = matmul[A,q(k-1)]
q(k) = z(k) / norm[z(k)]
λ(k) = [q(k)]−1 A q(k)
enddo

A =

−261 209 −49
−530 422 −98
−800 631 −144

 q(0) = (1, 0, 0)

λ(A) = (10, 4, 3)

•Only dominant eigenvector survives after large number of iterations.

k λ(k)
1 13.0606
2 10.7191
3 10.2703
4 10.0633
5 10.0198
6 10.0063
7 10.0020
8 10.0007



Power method

•Diagonalizable n× n matrix A i.e. X−1AX = diag (λ1, λ2, . . . , λn)

•X = [x1, x2, . . . , xn] matrix of eigenvectors

•q = (1, 0, 0, 0, . . .) unit norm vector

do k = 1,2,...
z(k) = matmul[A,q(k-1)]
q(k) = z(k) / norm[z(k)]
λ(k) = [q(k)]−1 A q(k)
enddo

A =

−261 209 −49
−530 422 −98
−800 631 −144

 q(0) = (1, 0, 0)

λ(A) = (10, 4, 3)

•Only dominant eigenvector survives after large number of iterations.

k λ(k)
1 13.0606
2 10.7191
3 10.2703
4 10.0633
5 10.0198
6 10.0063
7 10.0020
8 10.0007
9 10.0002

– Typeset by FoilTEX – 29



The concept of a propagator

Let’s say we wish to integrate the time-dependent Schrödinger equation:

ih̄
∂Ψ(x, t)

∂t
= − h̄

2

2m
∇2Ψ(x, t) + V (x, t)Ψ(x, t) = ĤΨ(x, t)

where x = {x1,x2, . . . ,xN}. Usually use atomic units: h̄ = 1,m = 1.

• Inverse of this differential equation is an integral equation involving the propagator:

Ψ(x, t) =

∫
K(x, t;x′, t′)Ψ(x′, t′) dx′

The propagator is the probability amplitude for a particle to travel from one place
to another in a given time. It is a Green’s function for the Schrödinger equation.

• Ordinarily one might use the Feynman path-integral formulation of quantum
mechanics to calculate the propagator. For given start and end points, overall
amplitude given by summing contributions of infinite number of all possible
histories which include those points. Amplitude contributed by a particular history
proportional to eiScl/h̄ where Scl is classical action of that history i.e. time integral
of classical Lagrangian T − V along corresponding phase space path of system.
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Pilot wave theory

Otherwise known as de Broglie-Bohm theory or Bohmian mechanics, this is an interpretation of QM

where particles exist and have trajectories (most people believe not possible!). Invented in 1927 by de

Broglie, but unfairly overruled by logical positivists of Copenhagen school (Bohr, Heisenberg, etc.).

• Particles guided by wave along streamlines of probability flow, following trajectory v = ∇S/m
where S is phase of Schrödinger wave function written in polar form Ψ(x, t) = R(x, t)eiS(x,t)/h̄.

• Whole thing follows from a single semantic change in the meaning of a word: |Ψ|2 is probability of

being at x rather than probability of being found there in a suitable measurement. Under

this assumption, measurement problem and all quantum ‘paradoxes’ simply disappear.

Quantum trajectory method
Pilot-wave theory not just interpretation: mathematical formulation of QM useful to compute

propagator! Substitute Ψ polar form in Schrödinger equation. Separate real and imaginary parts. Get

equations of quantum hydrodynamics - a ‘quantum trajectory method’ (analogy with fluid mechanics):

∂ρ
∂t = −ρ∇ · v (continuity equation, where ρ = R2) and ∂S

∂t = L(t) = 1
2mv

2 − (V + Q) (the

quantum Hamilton-Jacobi equation - an equation for the phase involving the quantum potential Q).
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Wave function synthesis along quantum trajectory

Ψ = R(x, t)e
iS(x,t)
h̄

Propagation of the amplitude

Along trajectory x(t) from (x0, t0) to (x1, t1) rate of change of density ∂ρ
∂t = −ρ∇·v.

Amplitude R = ρ
1
2 so ∂R

∂t = −R2∇·v. Integrate to get new R in terms of value at t0.

dR

R
= −

1

2
∇ · v dt

integrate
−−−−−−→ lnR + c = −

1

2

∫ t1
t0
∇ · v dt

exponentiate
−−−−−−−−→ A exp(lnR) = exp

[
−

1

2

∫ t1
t0
∇ · v dt

]

R(x1, t1) = exp

[
−1

2

∫ t1

t0

(∇ · v)x(t) dt

]
R(x0, t0)

To propagate R we integrate the divergence of the velocity field along the trajectory.

Propagation of the exponential of the phase

Quantum H-J eqn is
∂S

∂t
= L(t) =

1

2
mv

2 − (V +Q). From S(t1) = S(t0) +

∫ t1
t0

∂S

∂t
dt

× i
h̄

and exponentiate
−−−−−−−−−−−−−−−→

e
iS(x1,t1)

h̄ = exp

[
i

h̄

∫ t1

t0

L(t) dt

]
e
iS(x0,t0)

h̄

To propagate e
iS(x,t)
h̄ we integrate the quantum Lagrangian along the trajectory.
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Wave function synthesis along quantum trajectory

We multiply the expressions for the R propagator and the e
iS(x,t)
h̄ propagator to obtain

an expression for updating the full wave function along the trajectory:

Ψ(x1, t1) = exp
[
−1

2

∫ t1
t0

(∇ · v)x(t) dt
]

exp
[
i
h̄

∫ t1
t0
L(t) dt

]
Ψ(x0, t0)

Hydrodynamical wave function propagator (HWFP) KQ(x1, t1;x0, t0)

What does ∇ · v mean here?

At time t have volume element dV (t). Element corners defined by

trajectory positions {a, b, c, d}. Increment time by dt and equations of

motion shift corners to {a′, b′, c′, d′} and volume element changes to

dV (t+dt). Ratio of new to old volumes is the Jacobian: dV (t+dt) =

J(t+ dt, t)dV (t). Can be shown Jacobian is:

J(t1, t0) = exp

[∫ t1

t0

∇ · v dt

]
.

• Implies if velocity field has positive divergence (velocity vectors ‘point away from each other’) then

Jacobian increasing and local volume element expanding along flow. So velocity divergence locally

measures rate of change of geometric quantity.

• Note the R-propagator exp
[
−1

2

∫ t1
t0
∇ · v dt

]
is thus just J(t)−

1
2 .
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An interesting comparison

Quantum trajectories and Feynman path integrals

• In the expression Ψ(x1, t1) = KQ(x1, t1;x0, t0)Ψ(x0, t0) that propagates the wave
function along the quantum trajectory, the propagator KQ may - expressing the
R-propagator in terms of the Jacobian - be written as

KQ(x1, t1;x0, t0) =
1

J(t)
1
2

exp

[
i

h̄

∫ t1

t0

L(t) dt

]
.

• In Feynman’s path integral formulation of quantum mechanics the equivalent
propagator may be written as

KF (x1, t1;x0, t0) = N
∑

all paths

exp

[
i

h̄

∫ t1

t0

Lcl(t) dt

]
.

Here propagator linking two spacetime points calculated by linearly superposing
amplitudes eiS/h̄ (obtained by integrating classical Lagrangian Lcl(t) = 1

2mv
2−V )

associated with infinite number of all possible paths connecting the points.

In pilot-wave approach, achieve same effect by integrating the quantum Lagrangian
L(t) = 1

2mv
2 − (V +Q)along precisely one path. Bet you didn’t know that..
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Quantum trajectories and quantum Monte Carlo

What connection, if any, is there between quantum trajectory methods and state-
of-the-art techniques like quantum Monte Carlo that accurately solve the time-
independent Schrödinger equation sampling the full many-electron Ψ?

Diffusion Monte Carlo

The most highly-evolved QMC variant with broad scope is diffusion Monte Carlo (DMC). It is probably

the most accurate method known for solving the many-electron Schrödinger equation that also scales

reasonably with the number of particles. It remains tractable (and highly accurate) for large system

sizes; simulations of periodic systems with over 2000 electrons per cell have been reported.

It propagates an arbitrary starting wave function using a (Green’s function) propagator just like the

ones we have been discussing. The main difference is that the propagation occurs in imaginary time

τ as opposed to real time t. This has the effect of ‘improving’ the wave function i.e. making it look

more like the ground state as imaginary time passes (see later).

Ψ(x, τ + δτ) =

∫
K(x, x

′
, δτ)Ψ(x

′
, τ) dx

′

Evolving wave function represented by distribution in space and time of randomly-diffusing electron

positions over an ensemble of copies of the system. From pilot-wave perspective, this is something like

calculating expectation values by ‘sampling trajectories’ (from ensemble of different launch points).

Further reading

Quantum Monte Carlo simulations of solids, W.M.C. Foulkes, L. Mitas, R.J. Needs and G. Rajagopal, Rev. Mod. Phys 73, 33 (2001).
The quantum Monte Carlo method, M.D. Towler (cough), Phys. Stat. Solidi 243, 2573 (2006).
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Why do we propagate Ψ in imaginary time in DMC?

Consider Schrödinger equation (in a.u.) with constant offset ET to zero of potential:

−∂Ψ(x, t)

i∂t
=
(
Ĥ − ET

)
Ψ(x, t).

For eigenstate, general solution is clearly

φ(x, t) = φ(x, 0)e−i(Ĥ−ET )t.

Then expand an arbitrary (‘guessed’) Ψ(x, t) in complete set of eigenfunctions of Ĥ.

Ψ(x, t) =

∞∑
n=0

cnφn(x)e−i(En−ET )t

Substitute it with imaginary time τ = it. Oscillatory behaviour becomes exponential.

Ψ(x, τ) =

∞∑
n=0

cnφn(x)e−(En−ET )τ

Get imaginary time independence by choosing constant ET to be ground state
eigenvalue E0. As τ →∞, Ψ comes to look more and more like the ground state φ0.

Ψ(x, τ) = c0φ0 +

∞∑
n=1

cnφn(x)e−(En−E0)τ
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How do we propagate Ψ in imaginary time in DMC?

• We use a Green’s function propagator K(x,x′, δτ):

Ψ(x, τ + δτ) =

∫
K(x,x′, δτ)Ψ(x′, τ) dx′

• How do we find an expression for the propagator K? Consider imaginary-time
Schrödinger equation in two parts:

∂Ψ

∂τ
=

1

2
∇2

xΨ (diffusion equation)

∂Ψ

∂τ
= −VΨ (rate equation)

• Propagator for diffusion equation well-known: it is a 3N -dimensional Gaussian with
variance δτ in each dimension. Propagator for rate equation known - gives so-
called ‘branching factor’ which can be interpreted as a position-dependent weight
or stochastic survival probability for a member of an ensemble.

K(x,x′, δτ) =
1

(2πδτ)
3N
2

exp

(
−|x− x′|2

2δτ

)
× exp

[
−δτ

(
V (x) + V (x′)− 2ET

2

)]
Multiplying the two together to get the propagator for the imaginary-time

Schrödinger equation is an approximation valid in the limit of small δτ .
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A Diffusion Monte Carlo simulation
• Interpret Ψ as a probability density, then diffusion equation ∂Ψ

∂τ = 1
2∇

2
xΨ represents

movement of N diffusing particles. Turning this around, can represent Ψ(x, τ) by
ensemble of such sets of particles. Member of ensemble called a ‘configuration’.

• Interpret propagator K(x,x′, δτ) as probability of configuration moving from x′

to x in a time δτ . Branching factor determines population of configurations: in
regions of high V configurations will be killed off; in low V regions configurations
will multiply. It is this that ‘changes the shape of the wave function’ as it evolves.

• Propagate distribution in imaginary time, and after sufficiently long time excited
states will have decayed away to leave the ground-state Ψ. Can then continue
propagation and accumulate averages of observables.

Guess that the ground-state wave function for a single electron in a
harmonic potential well is a constant over some range (stupid!). Start
with seven copies of the system over which ensemble the electrons are
distributed according to this constant probability distribution. Propagate
the particle distribution in imaginary time according to the prescription
above, and watch the electrons become distributed according to the proper
Gaussian shape of the exact ground-state wave function. The change
in shape is produced by the branching factor occasionally eliminating
configurations in high V regions and duplicating ones in low V regions..

V(x)

Ψinit
(x)

Ψ0
(x)

t

τ {

x
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Importance sampling and the fixed-node approximation in DMC
The basic DMC algorithm sounds nice but doesn’t work in practice. This is because:

• Ψ can only be a probability distribution if of one sign everywhere (e.g. H atom,
boson system). For multi-particle fermion systems it necessarily has positive and
negative bits. Obvious ways of getting round this (e.g. separate probabilities for
different signs) fail on account of signal-to-noise problems (‘fermion sign problem’).

• Branching factor exp
[
−δτ2 (V (x) + V (x′)− 2ET)

]
contains potential V varying

from −∞ to +∞. Sampling of points e.g. near nucleus leads to massive
fluctuations in branching factor and significant numerical instabilities.

Fix problem by introducing importance sampling via a guessed trial function ΦT
(from a HF or DFT calculation, say). Require propagation to produce distribution
f(x, τ) = Ψ(x, τ)ΦT (x) - forced to be of one sign by demanding fixed ΦT and variable
Ψ functions have same nodal surface i.e. same zeroes (‘fixed-node approximation’).

New ‘imaginary time Schrödinger equation’ (Fokker-Planck)

−
∂f(x, τ)

∂τ
= −

1

2
∇2

xf(x, τ) +∇x · [F(x)f(x, τ)]− (EL(x)− ET) f(x, τ)

F(x) ≡ ∇xΦT
ΦT

‘drift vector’ EL = ĤΨ
Ψ ‘local energy’

f(x, τ + δτ) =
∫
K(x′, x, δτ)f(x, τ) dx′
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Problem solved - more or less
Final propagator consists of diffusion, drift and branching processes:

K(x
′
, x, δτ) =

1

(2πδτ)
3N
2

exp

[
−

(x′ − x−δτF(x))2

2δτ

]
exp

[
−
δτ

2

(
EL(x) + EL(x

′
)− 2ET

)]
To be compared with the original propagator without importance sampling:

K(x, x
′
, δτ) =

1

(2πδτ)
3N
2

exp

(
−

(x− x′)2

2δτ

)
exp

[
−
δτ

2

(
V (x) + V (x

′
)− 2ET

)]

• Mixed distribution f = ΨΦT of one sign everywhere so no more sign problem (at
cost of reducing flexibility by fixing the nodes).

• Branching term now contains local energy EL = ĤΨ/Ψ which fluctuates much less
than the potential V (for an eigenstate, EL is constant everywhere in configuration
space). No more numerical instability in the branching.

• Importance sampling from drift term F(x) = ∇ΦT/ΦT enhancing density of
configs where ΦT is large i.e. there is a drift or osmotic velocity directed towards
large ΦT on top of the random diffusion - like electric field on Brownian motion.

Fixed-node approximation most serious error in DMC, but still recover 95-100% of
the total energy error made in a Hartree-Fock calculation (the ‘correlation energy’)
for typical systems. Error typically increases with increasing atomic number.
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Calculating expectation values

Calculate energy from the mixed estimator:

EDMC =

∫
ΦTΨ(Φ−1

T ĤΦT ) dR∫
ΦTΨ dR

' 1

M

∑
i

EL(Ri)

For expectation values of operators which do not commute with Ĥ can reduce bias
by using e.g. “extrapolated estimation”:

∫
ΨÂΨ dR∫
ΨΨ dR

= 2

∫
ΦTΨ(Φ−1

T ÂΦT ) dR∫
ΦTΨ dR

−
∫

ΦTΦT (Φ−1
T ÂΦT ) dR∫

ΦTΦT dR
+O(Ψ− ΦT )2

or other techniques such as ‘future walking’ (see later).
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Simple DMC algorithm
• Generate walker ensemble drawn from some initial distribution (normally Φ2

T calculated via VMC).

• Evaluate the drift vector F and local energy EL for walker.

• Propagate configuration for a time step τ

R = R
′
+ τF + χ

χ is a 3N -dimensional vector with components normally distributed (variance τ and zero mean).

• Check whether the configuration has crossed a node. If it has, reject the move.

• Accept-reject step. Accept move with probability

p = min

[
|ΦT (R′)|2G(R′,R, τ)

|ΦT (R)|2G(R,R′, τ)
, 1

]

Choose τ such that ≥99% of moves are accepted.

• Branching. Calculate the number of copies of this configuration which continue at the next step

M = INT

{
η + exp

[
−τ
(
EL(R) + EL(R′)

2
− ET

)]}
η is a random number uniformly distributed in (0,1)

• Accumulate local energy EL

• Repeat previous steps for each walker in the ensemble

• Repeat until the required accuracy is obtained. During the process ET is occasionally adjusted so

that the number of configurations remains roughly constant.
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Results of DMC simulation

sI methane clathrate (178 atoms per cell)
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DMC cohesive energies

Method Si Ge C BN NiO
LSDA 5.28 4.59 8.61 15.07 10.96
VMC 4.48±0.01 3.80±0.02 7.36±0.01 12.85±0.03 8.57±0.01
DMC 4.63±0.02 3.85±0.02 7.35±0.01 9.44±0.01
Exp. 4.62 3.85 7.37 12.9 9.45

Units: eV per atom Si/Ge/C and eV per 2 atoms BN/NiO

DMC is a big improvement!
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VMC : review

EVMC =

∫
ΨĤΨ dR∫

Ψ2 dR
=

∫
Ψ2
(
ĤΨ
Ψ

)
dR∫

Ψ2 dR

•Generate points distributed according to Ψ2 using a random walk and the Metropolis

algorithm. Average local energies ĤΨ
Ψ over the walk −→ EVMC.
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Hydrogen atom VMC

NOTE: VMC is not particularly useful as a technique in its own right.
Its main purpose is to provide high-quality trial wave functions for DMC.
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DMC : review

•Propagate Ψ in imaginary time to enhance ground state component.

Ψ(R, τ + δτ) =

∫
K(R,R′, δτ)Ψ(R′, τ) dR′

K(R,R′, δτ) = (2πδτ)
−3N

2 exp

(
−|R−R′|2

2δτ

)
×exp

[
−δτ

(
V (R) + V (R′)

2
− ET

)]
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DMC : review

•Propagate Ψ in imaginary time to enhance ground state component.

Ψ(R, τ + δτ) =

∫
K(R,R′, δτ)Ψ(R′, τ) dR′

K(R,R′, δτ) = (2πδτ)
−3N

2 exp

(
−|R−R′|2

2δτ

)
×exp

[
−δτ

(
V (R) + V (R′)

2
− ET

)]

•Impractical for fermions (ground state bosonic; huge fluctuations).
•Solution : use f(R, τ) = Ψ(R, τ)ΦT (R) instead of Ψ(R, τ).

K(R′,R, δτ) = (2πδτ)
−3N

2 exp

[
−
(
R′ −R− δτF(R)

2δτ

)2
]

×exp

[
−δτ

(
EL(R) + EL(R′)

2
− ET

)]
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Practical Issues

Issues with the wave function

• Wave function generation and transfer. Simulation cells.

• Wave function evaluation. Representation of orbitals. Basis sets.

• Cusp conditions

• Pseudopotentials

• Spin

• Excited states

• Fixed-node approximation and DMC minutiae

• Jastrow factor and optimization strategies

Issues with calculating the total energy

• Electron-electron Coulomb interactions (Ewald, MPC etc. methods)

• Finite size effects

• Electron-ion interactions (non-local integration)

Computational, performance and scaling issues

• Where does the calculation spend its time?

• Scaling with system size

• Sources of error

• Problems remaining to be solved
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More about many-electron wave functions

Slater-Jastrow function

Ψ(X) = eJ(X)
∑
n

cnDn(X)

where X = (x1,x2, . . . ,xN), xi = {ri, σi}, D is a determinant of orbitals, and eJ(X)

is a ‘Jastrow factor’ explicitly dependent on the mutual separation of pairs of electrons
and their position with respect to the nuclear framework.

Points to note

• Sometimes useful to use more than one determinant.

• Nodal surface given entirely by determinant part (important for DMC).

• Best way to ‘guess’ appropriate orbitals for the determinant part is to use results
from e.g. molecular orbital theory/band theory calculations.

• Calculating the orbitals is often the most expensive part of the calculation. Need
to pay attention to representing them efficiently.

• Parameters in Jastrow factor obtained by optimization (usually variance
minimization). For linear parameters an extra-fast method is available.

• Can optimize parameters that affect nodal surface (orbital parameters; determinant
coefficients; backflow) but this introduces additional problems. See later.
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How to generate a trial wave function

Is the system finite or does it have periodic boundary conditions?

Usually use a ‘molecular orbital theory’ or ‘band theory’ method to generate suitable
orbitals. A QMC code thus requires links to standard programs.

This is often not necessary in model systems where orbitals are already known (e.g.
homogeneous electron gas) or where they can be simply parametrized.

What method to use?

Hartree-Fock theory - best possible set of orbitals for a single determinant wave
function in the case where the only correlation between particles is due to antisymmetry
(parallel spins only).

Density functional theory - best possible set of orbitals for a single determinant
(Kohn-Sham) wave function in a fictitious ‘non-interacting’ system with the same
density as the true one. All the complicated many-body physics is transferred to the
exchange-correlation functional which gives the ‘interacting bit’ of the total energy
from this density.

Quantum chemistry correlated wave function methods - various multideterminant
methods with acronyms (e.g. MCSCF, CASSCF, CIS, CISD, CCSD(T)). Remember
the advantage of QMC is its scaling; try not to use an N7 method to create the trial
wave function, otherwise what’s the point?
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What do we do with the wave function?

(1) Move the electrons

To implement the Metropolis algorithm, propose random electron moves accepted
with probability :

a(r −→ r′) = min

[
1,
ρ(r′)

ρ(r)

]
= min

[
1,

Ψ(X′)2

Ψ(X)2

]
Slater matrix contains value of every orbital at current location of every electron.
Determinant of this matrix times the Jastrow factor gives the value of the many-
electron wave function at that point in configuration space. The ratio of the squares
of the old and new wave functions after an electron hop appears in the Metropolis
acceptance probability above.



What do we do with the wave function?

(1) Move the electrons

To implement the Metropolis algorithm, propose random electron moves accepted
with probability :

a(r −→ r′) = min

[
1,
ρ(r′)

ρ(r)

]
= min

[
1,

Ψ(X′)2

Ψ(X)2

]
Slater matrix contains value of every orbital at current location of every electron.
Determinant of this matrix times the Jastrow factor gives the value of the many-
electron wave function at that point in configuration space. The ratio of the squares
of the old and new wave functions after an electron hop appears in the Metropolis
acceptance probability above.

NOTE: Not necessary to reevaluate entire determinant (scales as N3) every time we
move an electron. In fact we:

• Propose move of an electron from point A to point B.

• Evaluate the value of every orbital at point B (i.e. we recalculate one column of
the Slater matrix).

• New value of ratio given by a dot product of column of transpose of inverse Slater
matrix with the regenerated column (scales as N). Update of inverse Slater matrix
then scales as N2.
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What do we do with the wave function?

(2) Need {x, y, z} Cartesian first derivatives and the Laplacian of the orbitals at the
new electron position to calculate energy and drift, e.g.

Kinetic energy

K =

N∑
i=1

Ki =

N∑
i=1

−1
2

∇2
iΨ

Ψ

Fi =
1√
2
∇i (ln |Ψ|) =

1√
2

∇iΨ
Ψ

Ti = −1

4
∇2
i (ln |Ψ|) = −1

4

∇2
iΨ

Ψ
+

1

4

(
∇iΨ

Ψ

)2

Ki can then be expressed in terms of Fi and Ti as Ki = 2Ti − |Fi|2. Integrating
shows that 〈Ki〉 = 〈|Fi|2〉 = 〈Ti〉 - useful!

Drift vector

Gdiffusion(R′,R, δτ) = (2πδτ)
−3N

2 exp

−(R′ −R− δτ∇RΨ
Ψ

2δτ

)2

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Representation of orbitals

Can represent orbitals and derivatives on a grid, or we can use an expansion in a basis
set (which may consist of localized or delocalized functions).

Orbitals in periodic potential can be made to obey BLOCH’S THEOREM:

Ψnk(r) = eik·runk(r) or Ψnk(r + t) = Ψnk(r)eik·t

Delocalized basis (plane waves) : Ψnk(r) = eik·r
∑

G c
G
n e

iG·r.

Localized basis (e.g. atom-centred Gaussians {χ}): form Bloch sum by combining χ
and periodic images modulated by a phase factor: Φmk(r) =

∑
t χ

t
m(r− ra− t)eik·t

where χt
m(r− ra− t) is an atomic function (located at ra in the zero cell) translated

into cell t. Then : Ψnk(r) =
∑
m c

m
n Φmk(r)

In QMC, it is hugely preferable to use localized functions in the basis, since only a
subset of them contribute to each orbital at a point. Gain a factor of N over plane
waves in scaling with system size.
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Math(s)

Given three not-necessarily orthogonal basis vectors a1, a2 and a3, the component of
an arbitrary vector d along each basis vector is d · bi where bi is a reciprocal vector
to ai:

b1 =
a2 × a3

a1 · a2 × a3
d =

∑
i

(d · bi)ai



Math(s)

Given three not-necessarily orthogonal basis vectors a1, a2 and a3, the component of
an arbitrary vector d along each basis vector is d · bi where bi is a reciprocal vector
to ai:

b1 =
a2 × a3

a1 · a2 × a3
d =

∑
i

(d · bi)ai

Solid-state physics

If a1, a2 and a3 are the primitive translation vectors of a real-space crystalline lattice,
then the reciprocal lattice is then mapped out by the reciprocal lattice vectors Gn

defined by Gn = 2π(n1b1 + n2b2 + n3b3) where n represents an arbitrary triplet of
integers n1, n2, n3.

The reciprocal lattice is a Fourier space for arbitrary
functions that have the lattice periodicity

f(r) =
∑
n

cn exp(iGn · r)

This is because all functions exp(iGn · (r + Rm)) are invariant under all possible
lattice translations Rm since exp(iGn ·Rm) = 1.
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Arbitrary functions of position within the crystal

Consider a 1D reciprocal space. Make two sets of points :(1) the reciprocal lattice
vectors Gn, and (2) a set of k points (all the points between −1

2G1 = −πa and
1
2G1 = π

a where a is real space primitive lattice constant).

GG0 1 2 3{k} GG

• Waves exp(iGn · r) are either constant (G0 = 0) or have a wavelength less than
or equal to a (Gn 6= 0)). All are periodic in the primitive lattice.

• Waves exp(ikn · r) are not periodic in the primitive lattice, and have a wavelength
longer than a. Any k not in the first Brillouin zone (i.e. not in red cell) can be
reduced into it since it is the sum of some G and some k between −1

2G1 and 1
2G1.

Can therefore Fourier expand an arbitrary function of position within the solid which
is not necessarily periodic in the real space lattice but obeys the boundary conditions
at the surface :

g(r) =
∑
m

∑
n

cm,ne
i(kn+Gm)·r =

∑
n

(
∑
m

cm,ne
iGm·r)eikn·r =

∑
n

un(r)eikn·r

where the red parts of the formula are cell-periodic functions.
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Bloch functions

• The plane wave basis states exp(i(kn + Gm) are not generally eigenfunctions φ
of the Hamiltonian unless the potential is independent of position. We have seen
that some linear combination of them must be:

φ(r) =
∑
m

∑
n

cm,ne
i(kn+Gm)·r

• Energy eigenvalues are found to depend on a specific vector kn. Can energy
eigenfunctions be constructed from individual subsets of the set of terms appearing
in this general expansion, each subset corresponding to a single value of kn? Yes :

φn(r) =
∑
m

∑
n′

δn,n′cm,n′e
i(k′n+Gm)·r = eikn·r

∑
m

cn,me
iGm·r

• Energy eigenfunctions for a periodic potential may be written in the form of Bloch
functions :

φn(r) = un(r)eikn·r

Any arbitrary function of position may be written as a linear combination of Bloch
functions from different k, and we will do so later in constructing such things as
maximally localized Wannier orbitals for ‘improved scaling’ QMC.
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Band structure

s orbitals (k = π
a most ‘antibonding’)

p orbitals (k = 0 most ‘antibonding’)

The topology of orbital interactions determines which way bands ‘run’.
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k point sampling

• Electronic states allowed only at set of k points determined by boundary conditions
on the bulk solid. Density of allowed k points is proportional to the volume of the
solid.

• Infinite number of electrons in infinite solid accounted for by an infinite number of
k points in the 1st Brillouin zone, and only a finite number of electronic states are
occupied at each k point.

• Don’t need to calculate electronic states at infinite number of k points, since the
wave functions at k points that are very close together will be almost identical.
Represent region of k space by single k point. Then only finite number of objects
need to be calculated in order to calculate the total energy of the solid.

• Calculation of properties requires Brillouin zone integration - done by
straightforward sums over states using a special point scheme and modest number
of k points. Usual to use Monkhorst-Pack mesh (uniformally spaced k-points with
a possible offset of the origin).
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Many-body wave functions and periodic boundary conditions

• In band theory can reduce a problem into the real space primitive cell using k
points. In general with a many-body wave function we cannot.

• A primitive cell band theory calculation done on a 2× 2× 2 k-point grid defines a
many-body wave function for a 2× 2× 2 real-space supercell.

• How big does a cell need to be to represent the wave function properly? Needs
to accomodate the exchange-correlation hole around each electron. Forces on
particles in zero cell need to be approximately what they would be if the same cell
was placed in genuine (aperiodic) bulk solid.

• For silicon, 2× 2× 2 supercell might be sufficient (larger cells required for metals).
Concept of ‘plucking’ useful to reduce errors in Brillouin zone integration in band
theory calculation (subset of k grid used in orbitals for supercell).
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Many-body Bloch theorem

Invariance of Ĥ under translation of any electron by simulation cell lattice vector :

Ψks({ri}) = uks({ri}) exp

(
iks ·

N∑
i=1

ri

)

Invariance of Ĥ under translation of all electrons by primitive lattice vector.

Ψkp({ri}) = wks({ri}) exp

(
ikp ·

1

N

N∑
i=1

ri

)

If simulation cell contains more than one primitive cell, the two wave vectors are
distinct labels of the many-body wave function and both are required to specify the
translational symmetry.

Other QMC considerations

• Bloch functions are normally complex, and often prefer to make them real (with
appropriate linear combinations) for use in FN-DMC.

• Minimize ‘independent particle finite size effects’ by choosing ks appropriately (or
even ‘twist averaging’ over different values). Still leaves ‘Coulomb finite size effects’
caused by the artificial periodicity in the many-electron Hamiltonian. Later.

– Typeset by FoilTEX – 59



Basis sets for orbitals : plane waves

Use a Fourier expansion in plane waves, where the expansion coefficients are assumed

to be zero for wave vectors G whose kinetic energy |G|
2

2 exceeds a cutoff.

GOOD : Orthonormal complete set. Universal. Systematic improvement by changing
single cutoff parameter. DFT analytic gradients/forces accurate and cheap. Codes
widely available.

BAD : Restricted detail in real space - need to use pseudopotentials. Must use
periodic boundary conditions, even for molecules/surfaces etc. Non-local exchange
difficult. FFTs not good for massively parallel computation. Delocalization −→ extra
factor of N in scaling with system size in QMC.
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Basis sets for orbitals : Gaussian functions

In quantum chemistry, long range behaviour and

nuclear cusp originally suggested use of Slater-type

orbitals:

χSTO = rn−1exp (−ζr)Ylm (θ, φ)

Not suitable for fast calc of multi-centre integrals so

Cartesian Gaussian functions usually used instead:

χGTF = exp
(
−αr2

)
xlymzn

SEPARABLE : χGTF = χxχyχz with χx =

exp
(
−α(x− xa)2

)
(x − xa)l etc.. Categorize

into ’shells’ with L = l +m+ n:

s : 1 (L = 0)

p : x, y, z (L = 1)

d : x2, xy, xz, y2, yz, z2 (L=2)

GOOD : Localized. Don’t require pseudopotentials. Don’t require periodic boundary
conditions. Easier non-local exchange in one-electron codes (HF/hybrid DFT.. −→
good for e.g. systems containing transition elements). Scales better with system size
than PW.

BAD : Not universal. Disobey electron-nuclear cusp conditions. Basis set superposition
error. Physicists generally refuse to use them, chemists will use nothing else.
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Tedious Acronyms for Gaussian basis sets
STO-2G, STO-3G, STO-6G, STO-3G*, 3-21G, 3-21++G, 3-21G*, 3-21GSP, 4-31G, 4-22GSP, 6-31G, 6-31G-Blaudeau,
6-31++G, 6-31G*, 6-31G**, 6-31G*-Blaudeau, 6-31+G*, 6-31++G**, 6-31G(3df,3pd), 6-311G, 6-311G*, 6-311G**,
6-311+G*, 6-311++G**, 6-311++G(2d,2p), 6-311G(2df,2pd), 6-311++G(3df,3pd), MINI (Huzinaga), MINI (Scaled),
MIDI (Huzinaga), MIDI!, SV (Dunning-Hay), SVP+Diffuse (Dunning-Hay), DZ (Dunning), DZP (Dunning), DZP+Diffuse
(Dunning), TZ (Dunning), Chipman DZP+Diffuse, cc-pVDZ, cc-PVTZ, cc-pVQZ, cc-pV5Z, cc-pV6Z, pV6Z, pV7Z,
cc-pVDZ(seg-opt), cc-pVTZ(seg-opt), cc-PVQZ(seg-opt), cc-pCVDZ, cc-pCVTZ, cc-pCVQZ, cc-pCV5Z, aug-cc-pVDZ,
aug-cc-pVTZ, aug-cc-pVQZ, aug-cc-pV5Z, aug-cc-pV6Z, aug-pV7Z, aug-cc-pCVDZ, aug-cc-pCVTZ, aug-cc-pCVQZ, aug-
cc-pCV5Z, d-aug-cc-pVDZ, d-aug-cc-pVTZ, d-aug-cc-pVQZ, d-aug-cc-pV5Z, d-aug-cc-pV6Z, Feller Misc. CVDZ, Feller
Misc cVTZ, Feller Misc. CVQZ, NASA Ames ANO, Roos Augmented Double Zeta ANO, Roos Augmented Triple Zeta
ANO, WTBS, GAMESS VTZ, GAMESS PVTZ, Partridge Uncontr. 1, Partridge Uncontr. 2, Partridge Uncontr. 3,
Ahlrichs VDZ, Ahlrichs, pVDZ, Ahlrichs VTZ, Ahlrichs TZV, Binning/Curtiss SV, Binning/Curtiss VTZ, Binning/Curtiss
SVP, Binning-Curtiss VTZP, Mclean/Chandler VTZ, SV+Rydberg (Dunning-Hay), SVP+Rudberg (Dunning-Hay),
SVP+Diffuse+Rydberg, DZ+Rydberg (Dunning), DZP+Rydberg (Dunning), DZ+Double Rydberg (Dunning-Hay),
SV+Double Rydberg (Dunning-Hay), Wachters+f, Bauschlicher ANO, Sadlej pVTZ, Hay-Wadt MB(n+1)ECP, Hay-
Wadt VDZ(n+1)ECP, LANL2DZ ECP, SBKJC VDZ ECP, CRENBL ECP, CRENBS ECP, Stuttgart RLC ECP, Stuttgart
RSC ECP, DZVP (DFT Orbital), DZVP2 (DFT Orbital), TZP (DFT Orbital), DeMon Coulomb Fitting, DGauss A1 DFT
Coulomb Fitting, DGauss A1 DFT Exchange Fitting, DGauss A2 DFT Coulomb Fitting, DGauss A2 DFT Exchange Fitting,
Ahlrichs Coulomb Fitting, cc-pVDZ-fit2-1, cc-pVTZ-fit2-1, cc-pVDZ DK, cc-pVTZ DK, cc-pVQZ DK, cc-pV5Z DK,
cc-pVDZ(pt/sf/fw), cc-PVTZ(pt/sf/fw), cc-pVQZ(pt/sf/fw), cc-pV5Z(pt/sf/fw), cc-pVDZ(fi/sf/fw), cc-pVTZ(fi/sf/fw),
cc-pVQZ(fi/sf/fw), cc-pV5Z(fi/sf/fw), cc-pVDZ(pt/sf/sc), cc-pVDZ(pt/sf/lc), cc-pVTZ(pt/sf/sc), cc-PVTZ(pt/sf/lc),
ccp-PVQZ(pt/sf/sc), cc-pVQZ(pt/sf/lc), cc-PV5Z(pt/sf/sc), cc-PV5Z(pt/sf/lc), cc-pVDZ(fi/sf/sc), cc-PVDZ(fi/sf/lc),
cc-PVTZ(fi/sf/sc), cc-PVTZ(fi/sf/lc), cc-PVQZ(fi/sf/sc), cc-PVQZ(fi/sf/lc), cc-PV5Z(fi/sf/sc), cc-pV5Z(fi/sf/lc), Pople-
Style Diffuse, STO-3G* Polarization, 3-21G* Polarization, 6-31G* Polarization, 6-31G** Polarization, 6-311G* Polarization,
6-311G** Polarization, Pople (2d/2p) Polarization, Pople (3df,3pd) Polarization, HONDO7 Polarization, Huzinaga
Polarization, Dunning-Hay Diffuse, aug-cc-pVDZ Diffuse, aug-cc-pVTZ Diffuse, aug-cc-pVQZ Diffuse, aug-cc-pV5Z
Diffuse, aug-cc-pV6Z Diffuse, aug-pV7Z Diffuse, d-aug-cc-pVDZ Diffuse, d-aug-cc-pVTZ Diffuse, d-aug-cc-pVQZ Diffuse,
d-aug-cc-pV5Z Diffuse, d-aug-cc-pV6Z Diffuse, DHMS Polarization, Dunning-Hay Rydberg, Dunning-Hay Double Rydberg,
Binning-Curtiss (1d Polarization), Binning-Curtiss (df) Polarization, Ahlrichs Polarization, Glendenning Polarization,
Blaudeau Polarization, Core/val. Functions (cc-pCVDZ), Core/val. Functions (cc-pCVTZ), Core/val. Functions (cc-
pCVQZ), Core/val. Functions (cc-pCV5Z).
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Contraction schemes
contraction n. A linear combination of Gaussian primitives to be used as a basis
function in electronic structure calculations.

χCGTFi (r) =

L∑
j=1

cjχ
GTF
j (r)

χGTFj (r) = Nlm (α) rlYlm (θ, φ) exp
(
−αjr2

)
In e.g. HF calculations, best results would be obtained if all coefficients in the

Gaussian expansion were allowed to vary, but contractions give large increase in
efficiency in HF codes by reducing no. of orbital coefficients in the wave function.

α cj
3450660.8 0.000034
467601.94 0.000322
92314.514 0.0021
21992.520 0.0112
6082.9917 0.0475
1915.2715 0.157
676.43927 0.3524
263.00267 0.4238
106.89395 0.1593
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Generic Gaussian basis set file

8 5

S 8 1.0

8020.0 0.00108

1338.0 0.00804

255.4 0.05324

69.22 0.1681

23.90 0.3581

9.264 0.3855

3.851 0.1468

1.212 0.0728

SP 4 1.0

49.43 -0.00883 0.00958

10.47 -0.0915 0.0696

3.235 -0.0402 0.2065

1.217 0.379 0.347

SP 1 1.0

0.4764 1.0 1.0

SP 1 1.0

0.1802 1.0 1.0

D 1 1.0 - polarization function

0.31 1.0

Oxygen basis with five shells.
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Web libraries

EMSL Molecular basis set library

bse.pnl.gov or www.cse.clrc.ac.uk/qcg/basis/

My basis set library (largely for solid-state calcs)

www.tcm.phy.cam.ac.uk/∼mdt26/crystal.html
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Basis sets for orbitals : blip functions (splines)
Expansion in localized spline functions on a uniform grid

-3 -2 -1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Blip functions

Grid spacing unity

φ(x) = 1− 3

2
x2 +

3

4
|x|3 0 ≤ |x| ≤ 1

=
1

4
(2− |x|)3 1 < |x| ≤ 2

Grid spacing a

Xi = ia

Θ(x−Xi) = φ

(
(x−Xi)

a

)

In three dimensions there are only 64 non-zero blips for each position r. With plane
waves the number of functions in e.g. silicon is around 100 per atom.

GOOD : Achieved from transformation of wave function expanded in plane waves
with accompanying huge efficiency increase. Localized. Universal.

BAD : Somewhat greedy with memory and disk. Extra step required (blip
transformation of plane wave data file).
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No basis set : use a grid instead

-0.4 -0.2 0 0.2 0.4 0.6

Distance from nucleus (a.u.)

Chlorine atom 1s orbital

Orbitals and their derivatives are represented numerically on a radial grid. Interpolate
to get values at arbitrary position in space.

• Very expensive and inefficient for larger systems.

• Implemented in casino for atoms and dimers only.
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Interfaces to other programs

CASINO

gwfn.data

input

pseudopotential

         file

out

awfn.data

dwfn.data

MCEXX bwfn.data(.bin)

Blips

pwfn.data

stowfn.data

Gaussians:

TURBOMOLE
GAMESS−US
GAUSSIAN94/98/03/09

MOLPRO
C4
PSI−4

CRYSTAL98/03/06/09/14

Plane waves:

ABINIT

CASTEP

Slater
ADF

Numerical orbitals:

2DHF
ATSP2K

JEEP/GP/QBOX

PWSCF (Espresso)
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Spin
Antisymmetric wave function for an N -electron system (N = N↑ + N↓) in an Sz =
(N↑ − N↓)/2 state (non-relativistic; no external magnetic field) can be decomposed
in terms of spin components:

Ψ(r1s1, . . . , rNsN) =

K∑
i=1

Fi(r1, . . . , rN)χi(s1, . . . , sN)

Permutation symmetry implies expectation value of spin-dependent operator with
(Slater-Jastrow) wave function can be evaluated with a spin-assigned wave function:

Ψ(R) = eJ(R)
∑
i

D↑i (r1, . . . , rN↑)D
↓
i (rN↑+1, . . . , rN)

Is it an eigenstate of Ŝ2 as well as Ŝz? Determinant part can be constructed to be so
(as in quantum chemistry). Jastrow not necessarily (not invariant under exchange of
two antiparallel electrons). Options?

• Use totally symmetric Jastrow factor (increases energy and variance!)

• Wave function with asymmetric Jastrow satisfying cusp conditions (not generally
eigenstate of Ŝ2, but optimization reduces spin contamination).

• Can construct wave function that satisfies cusp conditions and is eigenstate of Ŝ2

(but increases scaling by N , since need to do explicit sum over spin components
unless Jastrow is spin-independent).
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Single determinants of one-electron spin orbitals

• Restricted form All spin orbitals are pure space-spin products of the form φnα or
φnβ and are occupied singly or in pairs with a common orbital factor φn.

• Unrestricted form Spin orbitals no longer occupied in pairs but still pure space-spin
products φnα or φ̄nβ. However, now have different spatial factors φn and φ̄n for
different spins.

What to do for non-collinear spin states?

• General unrestricted form No longer restrict to simple product form. Each
spin orbital now a 2-component complex spinor orbital: Ψ1 = φα1α + φβ1β and

Ψ2 = φα2α+ φβ2β. Interesting QMC project!
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Total energy

Total energy = KE + electron-ion + electron-electron + ion-ion

Ĥ = −1

2

∑
i

∇2
i +

∑
iα

vα(ri, rα) +
1

2

∑
i

∑
j 6=i

v(ri, rj) +
1

2

∑
α

∑
β 6=α

v(rα, rβ)

Electron-electron Coulomb interactions in periodic systems

Solve Poisson’s equations subject to periodic boundary conditions:

vE(r, rj) =
∑
R

erfc
(
γ

1
2|r− (rj + R)|

)
|r− (rj + R)|

− π

Ωγ

3D Ewald formula +
4π

Ω

∑
G 6=0

exp
(
−G2/4γ

)
G2

exp(iG · (r− rj))

MANY-BODY BLOCH THEOREM
Ewald energy remains unchanged if single electron translated by a supercell

lattice vector, or all electrons translated by a primitive cell lattice vector.
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Coulomb finite size effects

How big does cell have to be before Ewald energy of zero cell in field of the rest of
the crystal closely matches infinite supercell size limit?

Sources of error :
(1) ‘Squeezing of XC hole’ (minor effect, usually).
(2) Interaction with periodic array of XC holes, OR EQUIVALENTLY Ewald interaction
contains effective ‘depolarization field’ to cancel field due to surface charges. All
supercells contain same net dipole due to random arrangement of electrons with
respect to nuclei. Dipole and field interact.

One solution (there are other more modern ones) is to change many-body Hamiltonian
so that interaction with XC hole is exactly 1/r, without altering Hartree energy. Thus:

Ĥexact
e−e =

∑
i>j

f(ri − rj) +
∑
i

∫
WS

ρ(r) [vE(ri − r)− f(ri − r)] dr

MODIFIED PERIODIC
COULOMB (MPC)
INTERACTION

– Typeset by FoilTEX – 72



Electron-ion interactions with pseudopotentials

Ĥe−i =

N∑
i=1

V long
i (R) +

N∑
i=1

V short
i (R) +

N∑
i=1

V̂ short
nl,i Ψ(R)

Ψ(R)

long-range local + short-range local + short-range non-local

Vnl,i =
∑
l

V ps
nl,l(ri)

2l + 1

4π

∫
Pl [cos(θ′i)]×

Ψ(r1, . . . , ri−1, r
′
i, ri+1, . . . , rN)

Ψ(r1, . . . , ri−1, ri, ri+1, . . . , rN)
dΩr′i

0 1 2
r (Å)

-40

-30

-20

-10

0

V
 (

au
)

Nitrogen

• Horrible non-local angular integration - takes a lot of time.

• Done approximately in DMC. Error should be small but not tested extensively
(‘LOCALITY APPROXIMATION’).
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Excited states

Obviously DMC suffers from same variational

collapse issue as other methods: any attempt to

optimize the orbitals with respect to the energy

(or here, do the DMC imaginary-time projection)

will necessarily return Ψ to lowest energy state

compatible with the symmetry, usually the ground

state unless trial function is orthogonal to it. If

that’s what you want, then fine; DMC calculations

of such states are straightforward. Otherwise we

would seem to have a problem.

• BUT fixed-node approximation turns out to be a blessing in disguise. ‘Fixing the nodes’ is actually

a very strong constraint, and this essentially ensures convergence to the lowest energy state

compatible with the nodal surface of the trial wave function.

• DMC therefore gives the exact energy of any state if the nodal surface is exact, and it gives an

approximate energy with an approximate nodal surface.

• Important difference from GS: existence of variational principle for excited states cannot be

guaranteed in general. Depends on symmetry of ΨT . If excited state of interest is lowest state of

a given spin symmetry belonging to a 1D irreducible representation (i.e. it’s not degenerate or has

only accidental degeneracies), the DMC energy is variational. In all other cases, DMC is no longer

variational and quality of trial function becomes increasingly important.
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Excited states: where does DMC fit in?

• Closed-shell singlets etc. readily described by single determinants. For general treatment of

excited-state potential energy surfaces chemists use CASSCF.

• In typical applications, CASSCF treats only the static (nondynamical) correlation. Computing

missing dynamical part with e.g. multireference CI only for v. small molecules. Community seems

to have settled on using multireference perturbation theory - usually CASPT2 (better but still

unfavourable scaling).

• CASSCF/CASPT2 model pretty accurate and robust: model of choice for study of photochemistry

and excited-state reactivity.

• Newly developed models based on TDDFT also useful for excited states, but accuracy compromised

compared to higher-level correlated quantum chemistry methods, e.g., description of excitations

with charge transfer, multireference, or Rydberg character problematic in TD-DFT.

• Insufficient accuracy of all these methods severely limits predictive power; even CASPT2 where

short-range correlations treated only perturbatively - in contrast to the essentially exact treatment

in QMC. Good-quality DMC calculations potentially very useful. Restoration of missing CASSCF

dynamic correlation through DMC [Dubecky et al., vanadium-benzene half-sandwich]. The energy

of the VBz+ system (in eV) is shown as a function of the V+-Bz distance. We see that the

CASSCF calculation gives a very shallow minimum at a substantially larger distance – more than

0.2Å– compared to the more accurate DMC calculation.

Many interesting questions and open problems! See later lecture.
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Diamond band structure with single determinant trial function
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LDA band structure overlaid on DMC

quasiparticle energies from electron-hole

pair excitations (and GW results). DMC

energy of state at top of valence band

is zero by definition, but rest of energies

are meaningful.

Low-lying quasiparticle energies very accurate, but calculated energies of hole lying
deeper in the valence band significantly overestimated. Probably because fixed-node
approximation recovers larger fraction of the correlation energy of ground state than
highly excited state.
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Main sources of error in DMC

• Incompetence

• Statistical error

• Born-Oppenheimer approximation. Using geometries from band theory. (forces
have been difficult to calculate directly in QMC, though the situation is improving).

• Fixed-node error

• Time step error

• Pseudopotentials in general

• Localization approximation (non-local integration of pseudopotentials)

• Possible ‘spin contamination’
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Conclusions

• VMC using Slater-Jastrow wave functions with ∼30 variational parameters can
recover between 70 and 85% of the valence correlation energy, and DMC
calculations can recover roughly 95% plus. The remaining 5% is largely due
to fixed-node error.

• In solids, QMC is the only practical method based on many-body correlated wave
functions, the variational principle, and the many-electron Schrödinger equation.
It is now the method of choice for tackling large quantum many-body problems.

• Efficient implentations of VMC and DMC for finite and periodic systems have been
made in our computer program casino. Much remains to be done to make QMC
as flexible and easy to use as traditional methods.

• With its emphasis on many-electron wave functions and probabilities, QMC has
shown that it is possible to study interacting electrons in real solids (as complicated
as doped lanthanum cuprate superconductors in recent years) using very direct
computational techniques; no need to resort to perturbation theory or mean-field
approximations. Medium to large computers generally required however..

Download casino : vallico.net/casinoqmc
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Coffee break
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