Other QMC papers

This page contains a random selection of quantum Monte Carlo articles written by people not using CASINO. This is of course in no way intended to be a comprehensive list – it’s just a flavour of what other people are doing, so please don’t be offended if your paper doesn’t appear here – send us a link instead! Please email any additions to Mike Towler:  mdt26 ‘at’ cantab.net.

  1. Quantum Monte Carlo for ab initio calculations of energy-relevant materials
    Wagner, L. K.
    Int. J. Quantum Chem. 114, 94–101 (2014)  [link]
  2. Density dependence of fixed-node errors in diffusion quantum Monte Carlo: triplet pair correlations
    Kulahlioglu, A. H., Rasch, K., Hu, S., and Mitas, L.
    Chem. Phys. Lett. 591, 170–174 (2014)  [link]
  3. Spin-crossing in an organometallic Pt-benzene complex
    Granatier, J., Dubecky, M., Lazar, P., Otyepka, M., and Hobza, P.
    J. Chem. Theory Comput. 9, 1461–1468 (2013)  [link]
  4. Study of Ne-core and He-core pseudopotential errors in the MnO molecule: quantum Monte Carlo benchmark
    Zhu, M., and Mitas, L.
    Chem. Phys. Lett. 572, 136–140 (2013)  [link]
  5. Diffusion Monte Carlo in internal coordinates
    Petit, A. S., and McCoy, A. B.
    J. Phys. Chem. A 117, 7009–7018 (2013) [link]
  6. Quantum Monte Carlo applied to solids
    Shulenburger, L., and Mattsson, T. R.
    Phys. Rev. B 88 (2013)  [link]
  7. Point-defect optical transitions and thermal ionization energies from quantum Monte Carlo methods: application to the F-center defect in MgO
    Ertekin, E., Wagner, L. K., and Grossman, J. C.
    Phys. Rev. B 87 (2013)  [link]
  8. Quantum Monte Carlo methods describe noncovalent interactions with subchemical accuracy
    Dubecky, M., Jurecka, P., Derian, R., Hobza, P., Otyepka, M., and Mitas, L.
    J. Chem. Theory Comput. 9, 4287–4292 (2013)  [link]
  9. Dynamic load balancing for petascale quantum Monte Carlo applications: The alias method
    Sudheer, C. D., Krishnan, S., Srinivasan, A., and Kent, P. R. C.
    Comput. Phys. Commun. 184, 284–292 (2013)  [link]
  10. Types of single particle symmetry breaking in transition metal oxides due to electron correlation
    Wagner, L. K.
    J. Chem. Phys. 138 (2013)  [link]
  11. Quantum Monte Carlo study of pi-bonded transition metal organometallics: neutral and cationic vanadium-benzene and cobalt-benzene half sandwiches
    Horvathova, L., Dubecky, M., Mitas, L., and Stich, I.
    J. Chem. Theory Comput. 9, 390–400 (2013)  [link]
  12. Molecular properties by quantum Monte Carlo: an investigation on the role of the wave function ansatz and the basis set in the water molecule
    Zen, A., Luo, Y., Sorella, S., and Guidoni, L.
    J. Chem. Theory Comput. 9, 4332–4350 (2013)  [link]
  13. Fixed node diffusion Monte Carlo using a genetic algorithm: a study of the CO-4HeN complex, N=1 … 10
    Ramilowskiw, J. A., and Farrelly, D.
    Phys. Chem. Chem. Phys. 14, 8123–8136 (2012)  [link]
  14. Optimized structure and vibrational properties by error affected potential energy surfaces
    Zen, A., Zhelyazov, D., and Guidoni, L.
    J. Chem. Theory Comput. 8, 4204–4215 (2012)  [link]
  15. Spin multiplicity and symmetry breaking in vanadium-benzene complexes
    Horvathova, L., Dubecky, M., Mitas, L., and Stich, I.
    Phys. Rev. Lett. 109 (2012)  [link]
  16. Quantum Monte Carlo for the x-ray absorption spectrum of pyrrole at the nitrogen K-edge
    Zubarev, D. Y., Austin, B. M., and Lester Jr., W. A.
    J. Chem. Phys. 136 (2012)  [link]
  17. Impact of electron density on the fixed-node errors in quantum Monte Carlo of atomic systems
    Rasch, K. M., and Mitas, L.
    Chem. Phys. Lett. 528, 59–62 (2012)  [link]
  18. Many-body calculations of low-energy eigenstates in magnetic and periodic systems with self-healing diffusion Monte Carlo: steps beyond the fixed phase
    Reboredo, F. A.
    J. Chem. Phys. 136 (2012)  [link]
  19. Tuning metal hydride thermodynamics via size and composition: Li-H, Mg-H, Al-H, and Mg-Al-H nanoclusters for hydrogen storage
    Wagner, L. K., Majzoub, E. H., Allendorf, M. D., and Grossman, J. C.
    Phys. Chem. Chem. Phys. 14, 6611–6616 (2012)  [link]
  20. Many-body nodal hypersurface and domain averages for correlated wave functions
    Hu, S., Rasch, K., and Mitas, L.
    in Advances in quantum Monte Carlo (Tanaka, S and Rothstein, SM and Lester, WA, Ed.), pp 77–87 (2012)
  21. Classification of nodal pockets in many-electron wave functions via machine learning
    LeDell, E., Prabhat, Zubarev, D. Y., Austin, B., and Lester Jr., W. A.
    J. Math. Chem. 50, 2043–2050 (2012)  [link]
  22. Insulator-to-metal transition in selenium-hyperdoped silicon: observation and origin
    Ertekin, E., Winkler, M. T., Recht, D., Said, A. J., Aziz, M. J., Buonassisi, T., and Grossman, J. C.
    Phys. Rev. Lett. 108 (2012)  [link]
  23. Beyond a single solvated electron: hybrid quantum Monte Carlo and molecular mechanics approach
    Zubarev, D. Y., and Lester Jr., W. A.
    in Advances in quantum Monte Carlo (Tanaka, S and Rothstein, SM and Lester, WA, Ed.), pp 201–206 (2012)
  24. Simple impurity embedded in a spherical jellium: approximations of density functional theory compared to quantum Monte Carlo benchmarks
    Bajdich, M., Kent, P. R. C., Kim, J., and Reboredo, F. A.
    Phys. Rev. B 84 (2011)  [link]
  25. Disentanglement of triplet and singlet states of azobenzene: direct EELS detection and QMC modeling
    Dubecky, M., Derian, R., Horvathova, L., Allan, M., and Stich, I.
    Phys. Chem. Chem. Phys. 13, 20939–20945 (2011)  [link]
  26. Wave functions for quantum Monte Carlo calculations in solids: orbitals from density functional theory with hybrid exchange-correlation functionals
    Kolorenc, J., Hu, S., and Mitas, L.
    Phys. Rev. B 82 (2010)  [link]
  27. A diffusion Monte Carlo study of the O-H bond dissociation of phenol
    Wang, J., Domin, D., Austin, B., Zubarev, D. Y., McClean, J., Frenklach, M., Cui, T., and Lester Jr., W. A.
    J. Phys. Chem. A 114, 9832–9835 (2010)  [link]
  28. Failure of conventional density functionals for the prediction of molecular crystal polymorphism: a quantum Monte Carlo study
    Hongo, K., Watson, M. A., Sanchez-Carrera, R. S., Iitaka, T., and Aspuru-Guzik, A.
    J. Phys. Chem. Lett. 1, 1789–1794 (2010)  [link]
  29. Systematic reduction of sign errors in many-body calculations of atoms and molecules
    Bajdich, M., Tiago, M. L., Hood, R. Q., Kent, P. R. C., and Reboredo, F. A.
    Phys. Rev. Lett. 104 (2010)  [link]
  30. Quantum Monte Carlo calculations of dihydrogen binding energetics on Ca cations: an assessment of errors in density functionals for weakly bonded systems
    Bajdich, M., Reboredo, F. A., and Kent, P. R. C.
    Phys. Rev. B 82 (2010)  [link]
  31. Quantum Monte Carlo calculations for minimum energy structures
    Wagner, L. K., and Grossman, J. C.
    Phys. Rev. Lett. 104 (2010)  [link]
  32. Ground and excited electronic states of azobenzene: a quantum Monte Carlo study
    Dubecky, M., Derian, R., Mitas, L., and Stich, I.
    J. Chem. Phys. 133 (2010)  [link]
  33. Quantum Monte Carlo calculations of the energy-level alignment at hybrid interfaces: role of many-body effects
    Wu, Z., Kanai, Y., and Grossman, J. C.
    Phys. Rev. B 79 (2009)  [link]
  34. Theoretical study of electronic and atomic structures of (MnO)(n)
    Kino, H., Wagner, L. K., and Mitas, L.
    J. Comput. Theor. Nanosci. 6, 2583–2588 (2009)  [link]
  35. Role of exchange in density-functional theory for weakly interacting systems: quantum Monte Carlo analysis of electron density and interaction energy
    Kanai, Y., and Grossman, J. C.
    Phys. Rev. A 80 (2009)  [link]
  36. An optimized initialization algorithm to ensure accuracy in quantum Monte Carlo calculations
    Fisher, D. R., Kent, D. R., Feldmann, M. T., and Goddard III, W. A.
    J. Comput. Chem. 29, 2335–2343 (2008)  [link]
  37. Breathing orbital valence bond method in diffusion Monte Carlo: C-H bond dissociation of acetylene
    Domin, D., Braida, B., and Lester Jr., W. A.
    J. Phys. Chem. A 112, 8964–8969 (2008)  [link]
  38. Manager-worker-based model for the parallelization of quantum Monte Carlo on heterogeneous and homogeneous networks
    Feldmann, M. T., Cummings, J. C., Kent, D. R., Muller, R. P., and Goddard III, W. A.
    J. Comput. Chem. 29, 8–16 (2008)  [link]
  39. An optimized initialization algorithm to ensure accuracy in quantum Monte Carlo calculations
    Fisher, D. R., Kent, D. R., Feldmann, M. T., and Goddard III, W. A.
    J. Comput. Chem. 29, 2335–2343 (2008)  [link]
  40. Reagents for electrophilic amination: A quantum Monte Carlo study
    Amador-Bedolla, C., Salomon-Ferrer, R., Lester Jr., W. A., Vazquez-Martinez, J. A., and Aspuru-Guzik, A.
    J. Chem. Phys. 126 (2007)  [link]
  41. Finite-size error in many-body simulations with long-range interactions
    Chiesa, S., Ceperley, D. M., Martin, R. M., and Holzmann, M.
    Phys. Rev. Lett. 97 (2006)  [link]

Leave a Reply